Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
NGC 5643

NGC 5643

Credit: ESA/Hubble & NASA, A. Riess et al.

Dr Ismael Garcia Bernete

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
ismael.garciabernete@physics.ox.ac.uk
Denys Wilkinson Building, room 765
  • About
  • Publications

Modeling the Unresolved NIR–MIR SEDs of Local (z < 0.1) QSOs

The Astrophysical Journal American Astronomical Society 922:2 (2021) 157

Authors:

M Martínez-Paredes, O González-Martín, K HyeongHan, S Geier, I García-Bernete, C Ramos Almeida, A Alonso-Herrero, I Aretxaga, M Kim, BW Sohn, J Masegosa
More details from the publisher
More details
More details

Polycyclic aromatic hydrocarbons in seyfert and star-forming galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 509:3 (2021) 4256-4275

Authors:

I García-Bernete, D Rigopoulou, A Alonso-Herrero, M Pereira-Santaella, Patrick Roche, B Kerkeni

Abstract:

Polycyclic Aromatic Hydrocarbons (PAHs) are carbon-based molecules resulting from the union of aromatic rings and related species, which are likely responsible for strong infrared emission features. In this work, using a sample of 50 Seyfert galaxies (DL &amp;lt; 100 Mpc) we compare the circumnuclear (inner kpc) PAH emission of AGN to that of a control sample of star-forming galaxies (22 luminous infrared galaxies and 30 H ii galaxies), and investigate the differences between central and extended PAH emission. Using Spitzer/InfraRed Spectrograph spectral data of Seyfert and star-forming galaxies and newly developed PAH diagnostic model grids, derived from theoretical spectra, we compare the predicted and observed PAH ratios. We find that star-forming galaxies and AGN-dominated systems are located in different regions of the PAH diagnostic diagrams. This suggests that not only are the size and charge of the PAH molecules different, but also the nature and hardness of the radiation field that excite them. We find tentative evidence that PAH ratios in AGN-dominated systems are consistent with emission from larger PAH molecules (Nc &amp;gt; 300–400) as well as neutral species. By subtracting the spectrum of the central source from the total, we compare the PAH emission in the central versus extended region of a small sample of AGN. In contrast to the findings for the central regions of AGN-dominated systems, the PAH ratios measured in the extended regions of both type 1 and type 2 Seyfert galaxies can be explained assuming similar PAH molecular size distribution and ionized fractions of molecules to those seen in central regions of star-forming galaxies.
More details from the publisher
Details from ORA
More details

The Galaxy Activity, Torus, and Outflow Survey (GATOS): II. Torus and polar dust emission in nearby Seyfert galaxies

Astronomy and Astrophysics EDP Sciences 652 (2021) A99

Authors:

A Alonso-Herrero, S Garcia-Burillo, Sf Honig, I Garcia-Bernete, C Ramos Almeida, O Gonzalez-Martin, E Lopez-Rodriguez, Pg Boorman, Aj Bunker, L Burtscher, F Combes, R Davies, T Diaz-Santos, P Gandhi, B Garcia-Lorenzo, Eks Hicks, Lk Hunt, K Ichikawa, M Imanishi, T Izumi, A Labiano, Na Levenson, C Packham, M Pereira-Santaella, C Ricci, D Rigopoulou, P Roche, Dj Rosario, D Rouan, T Shimizu, M Stalevski, K Wada, D Williamson

Abstract:

We compare high angular resolution mid-infrared (mid-IR) and Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared (far-IR) images of twelve nearby (median 21 Mpc) Seyfert galaxies selected from the Galaxy Activity, Torus, and Outflow Survey (GATOS). The mid-IR unresolved emission contributes more than 60% of the nuclear (diameters of 1.5″ ∼ 150 pc) emission in most galaxies. By contrast, the ALMA 870 μm continuum emission is mostlyresolved with a median diameter of 42 pc and typically along the equatorial direction of the torus (Paper I). The Eddington ratios and nuclear hydrogen column densities (NH) of half the sample are favorable to launching polar and/or equatorial dusty winds, according to numerical simulations. Six of these show mid-IR extended emission approximately in the polar direction as traced by the narrow line region and perpendicular to the ALMA emission. In a few galaxies, the nuclear NH might be too high to uplift large quantities of dusty material along the polar direction. Five galaxies have low NH and/or Eddington ratios and thus polar dusty winds are not likely. We generated new radiative transfer CAT3D-WIND disk+wind models and model images at 8, 12, and 700 μm. We tailored these models to the properties of the GATOS Seyferts in this work. At low wind-to-disk cloud ratios, the far-IR model images have disk- and ring-like morphologies. The characteristic “X”-shape associated with dusty winds is seen better in the far-IR at intermediate-high inclinations for the extended-wind configurations. In most of the explored models, the mid-IR emission mainly comes from the inner part of the disk and cone. Extended biconical and one-sided polar mid-IR emission is seen in extended-wind configurations and high wind-to-disk cloud ratios. When convolved to the typical angular resolution of our observations, the CAT3D-WIND model images reproduce qualitative aspects of the observed mid- and far-IR morphologies. However, low to intermediate values of the wind-to-disk ratio are required to account for the observed large fractions of unresolved mid-IR emission in our sample. This work and Paper I provide observational support for the torus+wind scenario. The wind component is more relevant at high Eddington ratios and/or active galactic nucleus luminosities, and polar dust emission is predicted at nuclear column densities of up to ∼1024 cm−2. The torus or disk component, on the other hand, prevails at low luminosities and/or Eddington ratios.

More details from the publisher
Details from ORA
More details
Details from ArXiV

The Galaxy Activity, Torus, and Outflow Survey (GATOS)

Astronomy & Astrophysics EDP Sciences 652 (2021) a98

Authors:

S García-Burillo, A Alonso-Herrero, C Ramos Almeida, O González-Martín, F Combes, A Usero, S Hönig, M Querejeta, EKS Hicks, LK Hunt, D Rosario, R Davies, PG Boorman, AJ Bunker, L Burtscher, L Colina, T Díaz-Santos, P Gandhi, I García-Bernete, B García-Lorenzo, K Ichikawa, M Imanishi, T Izumi, A Labiano, NA Levenson, E López-Rodríguez, C Packham, M Pereira-Santaella, C Ricci, D Rigopoulou, D Rouan, T Shimizu, M Stalevski, K Wada, D Williamson
More details from the publisher
More details

The dust-gas AGN torus as constrained from X-ray and mid-infrared observations

Astronomy & Astrophysics EDP Sciences 651 (2021) a91

Authors:

D Esparza-Arredondo, O Gonzalez-Martín, D Dultzin, J Masegosa, C Ramos-Almeida, I García-Bernete, J Fritz, N Osorio-Clavijo
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet