Light travel time effects in kilonova models
Monthly Notices of the Royal Astronomical Society Oxford University Press 546:2 (2026) stag068
Abstract:
The extremely rapid evolution of kilonovae results in spectra that change on an hourly basis. These spectra are key to understanding the processes occurring within the event, but this rapid evolution is an unfamiliar domain compared to other explosive transient events, such as supernovae. In particular, the most obvious P Cygni feature in the spectra of AT2017gfo – commonly attributed to strontium – possesses an emission component that emerges after, and ultimately outlives, its associated absorption dip. This delay is theorized to arise from reverberation effects, wherein photons emitted earlier in the kilonova’s evolution are scattered before reaching the observer, causing them to be detected at later times. We aim to examine how the finite speed of light – and therefore the light travel time to an observer – contributes to the shape and evolution of spectral features in kilonovae. Using a simple model, and tracking the length of the journey photons undertake to an observer, we are able to test the necessity of accounting for this time delay effect when modelling kilonovae. In periods where the photospheric temperature is rapidly evolving, we show spectra synthesized using a time-independent approach are visually distinct from those where these time delay effects are accounted for. Therefore, in rapidly evolving events such as kilonovae, time dependence must be taken into account.Pan-STARRS Follow-up of the Gravitational-wave Event S250818k and the Light Curve of SN2025ulz
The Astrophysical Journal Letters American Astronomical Society 995:1 (2025) L27
Abstract:
Kilonovae are the scientifically rich—but observationally elusive—optical transient phenomena associated with compact binary mergers. Only a handful of events have been discovered to date, all through multiwavelength (gamma-ray) and multimessenger (gravitational-wave) signals. Given their scarcity, it is important to maximise the discovery possibility of new kilonova events. To this end, we present our follow-up observations of the gravitational-wave signal S250818k—a plausible binary neutron star merger at a distance of 237 ± 62 Mpc. Pan-STARRS tiled 286 and 318 deg2 (32% and 34% of the 90% sky localisation region) within 3 and 7 days of the GW signal, respectively. ATLAS covered 65% of the sky map within 3 days, but with lower sensitivity. These observations uncovered 47 new transients; however, none were deemed to be linked to S250818k. We undertook an expansive follow-up campaign of AT2025ulz, the purported counterpart to S250818k. The griz-band light curve, combined with our redshift measurement (z = 0.0849 ± 0.0003), all indicate that SN2025ulz is a type IIb supernova and thus not the counterpart to S250818k. We rule out the presence of an AT2017gfo-like kilonova within ≈27% of the distance posterior sampled by our Pan-STARRS pointings (≈9.1% across the total 90% 3D sky localisation). We demonstrate that early observations are optimal for probing the distance posterior of the 3D gravitational-wave sky map, and that SN2025ulz was a plausible kilonova candidate for ≲5 days, before ultimately being ruled out.Search for the Optical Counterpart of Einstein Probe–discovered Fast X-Ray Transients from the Lulin Observatory
The Astrophysical Journal: Supplement Series American Astronomical Society 281:1 (2025) 20
Abstract:
The launch of the Einstein probe (EP) mission has revolutionized the detection and follow-up observations of fast X-ray transients (FXTs) by providing prompt and timely access to their precise localizations. In the first year of its operation, the EP mission reported the discovery of 72 high signal-to-noise FXTs. Subjected to the visibility in the sky and weather conditions, we search for the optical counterparts of 42 EP-discovered FXTs from the Lulin Observatory. We successfully detected the optical counterparts of 12 FXTs, and five of those were first discovered by us from the Lulin Observatory. We find that the optical counterparts are generally faint (r > 20 mag) and decline rapidly (>0.5 mag day−1). We also find that 12 out of 42 FXTs show direct evidence of their association with gamma-ray bursts (GRBs) through significant temporal and spatial overlapping. Furthermore, the luminosities and redshifts of FXTs with confirmed optical counterparts in our observations are fully consistent with the faintest end of the GRB population. However, the nondetection of any associated optical counterpart with a significant fraction of FXTs suggests that EP FXTs are likely a subset of the so-called “dark FXTs,” similar to “dark GRBs.” Additionally, the luminosities of two FXTs with confirmed redshifts are also consistent with jetted tidal disruption events (TDEs). However, we find that the optical luminosities of FXTs differ significantly from typical supernova shock breakout or kilonova emissions. Thus, we conclude that a significant fraction of EP-discovered FXTs are associated with events having relativistic jets; either a GRB or a jetted TDE.EP 250108a/SN 2025kg: Observations of the Most Nearby Broad-line Type Ic Supernova Following an Einstein Probe Fast X-Ray Transient
The Astrophysical Journal Letters American Astronomical Society 988:1 (2025) L13
Abstract:
With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections to γ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. At z = 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to He I 1.0830 μm and 2.0581 μm and a broad, unidentified emission feature at ∼4–4.5 μm. Further, we observe broadened Hα in optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a 56Ni mass of 0.2–0.6 M⊙. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051 erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30 M⊙. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe.SN 2023zaw: The Low-energy Explosion of an Ultrastripped Star
The Astrophysical Journal Letters American Astronomical Society 980:2 (2025) L44