Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Emeritus Professor Mike Glazer

Emeritus Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
mike.glazer@physics.ox.ac.uk
Telephone: 01865 (2)72290
Clarendon Laboratory, room 164
amg122.com
  • About
  • Publications

Vibrational modes and overlap matrix of LiNb1−xTaxO3 mixed crystals

Physical Review B American Physical Society (APS) 99:9 (2019) 094306

Authors:

A Bartasyte, S Margueron, AM Glazer, E Simon, I Gregora, S Huband, PA Thomas
More details from the publisher
More details

Probing the intrinsic and extrinsic origins of piezoelectricity in lead zirconate titanate single crystals

Journal of Applied Crystallography International Union of Crystallography 51:5 (2018) 1396-1403

Authors:

N Zhang, S Gorfman, H Choe, T Vergentev, V Dyadkin, H Yokota, D Chernyshov, B Wang, Anthony Glazer, W Ren, Z-G Ye

Abstract:

The physical origin of the piezoelectric effect has been the focus of much research work. While it is commonly accepted that the origins of piezoelectricity may be intrinsic (related to the change of lattice parameters) and extrinsic (related to the movement of domain walls), their separation is often a challenging experimental task. Here in situ high-resolution synchrotron X-ray diffraction has been combined with a new data analysis technique to characterize the change of the lattice parameters and domain microstructure of a PbZr1−xTixO3 (x = 0.45) crystal under an external electric field. It is shown how `effective piezoelectric coefficients' evolve upon the transition from purely `intrinsic' effects to `extrinsic' ones due to domain-wall motion. This technique and corresponding data analysis can be applied to broader classes of materials and provide important insights into the microscopic origin of their physical properties.
More details from the publisher
Details from ORA
More details

Local structures and temperature-driven polarization rotation in Zr-rich PbZr1-xTixO3

Applied Physics Letters AIP Publishing 113 (2018) 012901

Authors:

Z Wang, N Zhang, H Yokota, Anthony M Glazer, Y Yoneda, W Ren, Z-G Ye

Abstract:

PbZr1-xTixO3, which has abundant structural variations in the corresponding physical properties, has been used in a large variety of applications. To understand the effect of the structure on its high-performance piezoelectric properties, its local and average structures are studied. Total scattering data have been obtained from high-energy synchrotron powder diffraction experiments at 20 K and 300 K. Using the reverse Monte Carlo method, information on cation displacements has been extracted from X-ray Pair Distribution Function data. This suggests that the local disorder of the B cations is mainly driven by thermal motion, while the local disorder of Pb is most likely caused by more complex factors, such as displacive disorder. Both rhombohedral and monoclinic local polarizations are observed in Zr-rich PZT, whose directions depend on temperature.
More details from the publisher
Details from ORA
More details

Monoclinic distortion, polarization rotation and piezoelectricity in the ferroelectric Na0.5Bi0.5TiO3

IUCrJ International Union of Crystallography 5:4 (2018) 417-427

Authors:

H Choe, J Bieker, N Zhang, Anthony M Glazer, PA Thomas, S Gorfman

Abstract:

The relationship between crystal structure and physical properties in the ferroelectric Na0.5Bi0.5TiO3 (NBT) has been of interest for the last two decades. Originally, the average structure was held to be of rhombohedral (R3c) symmetry with a fixed polarization direction. This has undergone a series of revisions, however, based on high-resolution X-ray diffraction, total neutron scattering, and optical and electron microscopy. The recent experimental findings suggest that the true average symmetry is monoclinic (space group Cc), which allows for a rotatable spontaneous polarization. Neither polarization rotation nor its potentially important real role in enhanced piezoelectricity is well understood. The present work describes an in situ investigation of the average monoclinic distortion in NBT by time-resolved single-crystal X-ray diffraction under external electric fields. The study presents a high-resolution inspection of the characteristic diffraction features of the monoclinic distortion – splitting of specific Bragg reflections – and their changes under a cyclic electric field. The results favour a model in which there is direct coupling between the shear monoclinic strain and the polarization rotation. This suggests that the angle of polarization rotation under a sub-coercive electric field could be 30° or more.
More details from the publisher
Details from ORA
More details
More details

Confusion over the description of the quartz structure yet again

Journal of Applied Crystallography International Union of Crystallography 51 (2018) 915-918

Abstract:

In a recent paper [Huang, Gog, Kim, Kasman, Said, Casa, Wieczorek, Hönnicke and Assoufid (2018). J. Appl. Cryst. 51, 140–147], a description of the structure of quartz was given that is incorrect. There is a long history of such errors in publications describing the quartz structure. This was fully and correctly discussed in 1978 [Donnay and Le Page (1978). Acta Cryst. A34, 584–594], and yet these errors still persist. In the present paper the description by Huang et al. is corrected and the seminal work of Donnay and Le Page revisited.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet