Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Roy Grainger

Reader in Atmospheric Physics

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Earth Observation Data Group
Don.Grainger@physics.ox.ac.uk
Telephone: 01865 (2)72888
Robert Hooke Building, room S47
  • About
  • Publications

Transport impacts on atmosphere and climate: Shipping

ATMOSPHERIC ENVIRONMENT 44:37 (2010) 4735-4771

Authors:

Veronika Eyring, Ivar SA Isaksen, Terje Berntsen, William J Collins, James J Corbett, Oyvind Endresen, Roy G Grainger, Jana Moldanova, Hans Schlager, David S Stevenson
More details from the publisher

Laboratory measurements of the optical properties of sea salt aerosol

Atmospheric Chemistry and Physics 9:1 (2009) 221-230

Authors:

R Irshad, RG Grainger, DM Peters, RA McPheat, KM Smith, G Thomas

Abstract:

The extinction spectra of laboratory generated sea salt aerosols have been measured from 1μm to 20μm using a Bruker 66v/S FTIR spectrometer. Concomitant measurements include temperature, pressure, relative humidity and the aerosol size distribution. The refractive indices of the sea salt aerosol have been determined using a simple harmonic oscillator band model (Thomas et al., 2004) for aerosol with relative humidities at eight different values between 0.4% to 86%. The resulting refractive index spectra show significant discrepancies when compared to existing sea salt refractive indices calculated using volume mixing rules (Shettle and Fenn, 1979). Specifically, an additional band is found in the refractive indices of dry sea salt aerosol and the new data shows increased values of refractive index at almost all wavelengths. This implies that the volume mixing rules, currently used to calculate the refractive indices of wet sea salt aerosols, are inadequate. Furthermore, the existing data for the real and imaginary parts of the refractive indices of dry sea salt aerosol are found not to display the Kramers-Kronig relationship. This implies that the original data used for the volume mixing calculations is also inaccurate.
More details from the publisher
More details

Aerosol indirect effects ĝ€" general circulation model intercomparison and evaluation with satellite data

Atmospheric Chemistry and Physics 9:22 (2009) 8697-8717

Authors:

J Quaas, Y Ming, S Menon, T Takemura, M Wang, JE Penner, A Gettelman, U Lohmann, N Bellouin, O Boucher, AM Sayer, GE Thomas, A McComiskey, G Feingold, C Hoose, JE Kristj́nsson, X Liu, Y Balkanski, LJ Donner, PA Ginoux, P Stier, B Grandey, J Feichter, I Sednev, SE Bauer, D Koch, RG Grainger, A Kirkevaring, T Iversen, O Seland, R Easter, SJ Ghan, PJ Rasch, H Morrison, JF Lamarque, MJ Iacono, S Kinne, M Schulz

Abstract:

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τ a) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between τa and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and τ a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strongfcldĝ€"τa relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between τa and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLRĝ€"τ a relationship show a strong positive correlation between τa andfcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of τa, and parameterisation assumptions such as a lower bound onNd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5 Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic τa and satellite-retrievedNdĝ€"τa regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2 Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5 Wm−2, with a total estimate of −1.2±0. 4 Wm−2.
More details from the publisher

Cloud detection for MIPAS using singular vector decomposition

Atmospheric Measurement Techniques 2:2 (2009) 533-547

Authors:

J Hurley, A Dudhia, RG Grainger

Abstract:

Satellite-borne high-spectral-resolution limb sounders, such as the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT, provide information on clouds, especially optically thin clouds, which have been difficult to observe in the past. The aim of this work is to develop, implement and test a reliable cloud detection method for infrared spectra measured by MIPAS. Current MIPAS cloud detection methods used operationally have been developed to detect cloud effective filling more than 30% of the measurement field-of-view (FOV), under geometric and optical considerations - and hence are limited to detecting fairly thick cloud, or large physical extents of thin cloud. In order to resolve thin clouds, a new detection method using Singular Vector Decomposition (SVD) is formulated and tested. This new SVD detection method has been applied to a year's worth of MIPAS data, and qualitatively appears to be more sensitive to thin cloud than the current operational method.
More details from the publisher
More details

The GRAPE aerosol retrieval algorithm

Atmospheric Measurement Techniques 2:2 (2009) 679-701

Authors:

GE Thomas, CA Poulsen, AM Sayer, SH Marsh, SM Dean, E Carboni, R Siddans, RG Grainger, BN Lawrence

Abstract:

The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC) combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations - this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998), as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE) data-set. The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet