Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
lesley.gray@retired.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Enhanced signature of solar variability in Eurasian winter climate

Geophysical Research Letters American Geophysical Union (2010)

Authors:

T Woollings, M Lockwood, G Masato, C Bell, L Gray
More details from the publisher

Enhanced signature of solar variability in Eurasian winter climate

Geophysical Research Letters 37:20 (2010)

Authors:

T Woollings, M Lockwood, G Masato, C Bell, L Gray

Abstract:

We demonstrate that open solar flux (Fs, derivable from geomagnetic data) exhibits stronger correlations with atmospheric circulation variations than conventionally-used measures of solar activity. The circulation anomalies are particularly enhanced over the North Atlantic/Eurasian sector, where there are large changes in the occurrence of blocking and the winter mean surface temperature differs by several degrees between high- and low-solar terciles. The relationship is stronger and simpler for Fs, being more linear between high- and low-solar winters. While the circulation anomalies strongly resemble the North Atlantic Oscillation they also extend deeper into Eurasia, especially in high-solar conditions. This distinct signature may be useful for the detection and attribution of observed changes and also the identification of dynamical mechanisms. © 2010 by the American Geophysical Union.
More details from the publisher
More details

Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations

Quarterly Journal of the Royal Meteorological Society 136:650 (2010) 1181-1190

Authors:

CJ Bell, LJ Gray, J Kettleborough

Abstract:

The robustness of stratospheric circulation changes under increased concentrations of carbon dioxide are investigated using the Met Office HadSM3-L64 model. Equilibrium climate change simulations employing forcing of two and four times pre-industrial CO2 are presented, with particular focus on the temperature response of the Arctic lower stratosphere during Northern Hemisphere winter. High CO2 loading provides the ability to attain the statistical significance of any response, typically a problem given the large component of interannual variability common to the region. In response to CO2, the expected global stratospheric cooling is modified by an anomalous dynamical warming of the Arctic winter lower stratosphere. This warming is shown to be associated with an increase in frequency of stratospheric sudden warming (SSW) events. At four times pre-industrial CO2, the frequency of SSW events per year is doubled with respect to the control simulation. Further, by comparing winters with and without SSW events, it is shown that the warming of the lower stratosphere cannot be achieved without the presence of a frequency modulation of SSW events. © 2010 Royal Meteorological Society and Crown.
More details from the publisher
More details

The climatology of the middle atmosphere in a vertically extended version of the met office's climate model. Part I: Mean state

Journal of the Atmospheric Sciences 67:5 (2010) 1509-1525

Authors:

SC Hardiman, N Butchart, SM Osprey, LJ Gray, AC Bushell, TJ Hinton

Abstract:

The climatology of a stratosphere-resolving version of the Met Office's climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations-the tropical "tape recorder"-is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasibiennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small. © 2010 American Meteorological Society.
More details from the publisher
More details

The 11-yr solar cycle in ERA-40 data: An update to 2008

Journal of Climate 23:8 (2010) 2213-2222

Authors:

THA Frame, LJ Gray

Abstract:

Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented. © 2010 American Meteorological Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet