Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
lesley.gray@retired.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

The Southern Hemisphere atmospheric circulation response to volcanic eruptions in coupled climate models

EGU General Assembly Conference Abstracts 12 (2010) 3110-3110

Authors:

Alexey Karpechko, Nathan Gillett, Mauro Dall Amico, Lesley Gray

Understanding stratosphere-troposphere links using new diagnostics of the polar vortex

EGU General Assembly Conference Abstracts 12 (2010) 2334-2334

Authors:

Daniel Mitchell, Lesley Gray, Andrew Charlton-Perez

Variability and Extreme Variability of the Stratospheric Polar Vortices Using 2D Moments

AGU Fall Meeting Abstracts (2010)

Authors:

DM Mitchell, L Gray, A Charlton Perez

Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone

Journal of the Atmospheric Sciences 66:8 (2009) 2402-2417

Authors:

LJ Gray, ST Rumbold, KP Shine

Abstract:

The 11-yr solar cycle temperature response to spectrally resolved solar irradiance changes and associated ozone changes is calculated using a fixed dynamical heating (FDH) model. Imposed ozone changes are from satellite observations, in contrast to some earlier studies. A maximum of 1.6 K is found in the equatorial upper stratosphere and a secondary maximum of 0.4 K in the equatorial lower stratosphere, forming a double peak in the vertical. The upper maximum is primarily due to the irradiance changes while the lower maximum is due to the imposed ozone changes. The results compare well with analyses using the 40-yr ECMWF Re-Analysis (ERA-40) and NCEP/NCAR datasets. The equatorial lower stratospheric structure is reproduced even though, by definition, the FDH calculations exclude dynamically driven temperature changes, suggesting an important role for an indirect dynamical effect through ozone redistribution. The results also suggest that differences between the Stratospheric SoundingUnit (SSU)/Microwave Sounding Unit (MSU) and ERA-40 estimates of the solar cycle signal can be explained by the poor vertical resolution of the SSU/MSU measurements. The adjusted radiative forcing of climate change is also investigated. The forcing due to irradiance changes was 0.14 W m-2, which is only 78%of the value obtained by employing the standard method of simple scaling of the total solar irradiance (TSI) change. The difference arises because much of the change in TSI is at wavelengths where ozone absorbs strongly. The forcing due to the ozone change was only 0.004 W m-2 owing to strong compensation between negative shortwave and positive longwave forcings. © 2009 American Meteorological Society.
More details from the publisher
More details

Stratospheric communication of El Niño teleconnections to European winter

Journal of Climate 22:15 (2009) 4083-4096

Authors:

CJ Bell, LJ Gray, AJ Charlton-Perez, MM Joshi, AA Scaife

Abstract:

The stratospheric role in the European winter surface climate response to El Niño-Southern Oscillation sea surface temperature forcing is investigated using an intermediate general circulation model with a well-resolved stratosphere. Under El Niño conditions, both the modeled tropospheric and stratospheric mean-state circulation changes correspond well to the observed "canonical" responses of a late winter negative North Atlantic Oscillation and a strongly weakened polar vortex, respectively. The variability of the polar vortex is modulated by an increase in frequency of stratospheric sudden warming events throughout all winter months. The potential role of this stratospheric response in the tropical Pacific-European teleconnection is investigated by sensitivity experiments in which the mean state and variability of the stratosphere are degraded. As a result, the observed stratospheric response to El Niño is suppressed and the mean sea level pressure response fails to resemble the temporal and spatial evolution of the observations. The results suggest that the stratosphere plays an active role in the European response to El Niño. A saturation mechanism whereby for the strongest El Niño events tropospheric forcing dominates the European response is suggested. This is examined by means of a sensitivity test and it is shown that under large El Niño, forcing the European response is insensitive to stratospheric representation.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet