Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Lesley Gray

Emeritus

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Lesley.Gray@physics.ox.ac.uk
Telephone: 01865 (2)72909
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Influence of the prescribed solar spectrum on calculations of atmospheric temperature

Geophysical Research Letters 35:22 (2008)

Authors:

W Zhong, SM Osprey, LJ Gray, JD Haigh

Abstract:

Significant differences in heating rates are found when two solar irradiance spectra are used in a line-by-line radiative transfer code. Compared with a spectrum of recent satellite data an older theoretical spectrum gives 20-40% more heating in the ozone Hartley band, important in the upper stratosphere. The spectra are implemented in a broadband radiation code to which some improvements are also made to the ozone absorption parameterization. A widely-used spectrum of ground-based data from 1960s gives somewhat lower heating rates. The effects of the changes in the spectrum, and the broad-band scheme, on the temperatures simulated by a middle atmosphere GCM are investigated. The model has previously shown a warm bias, compared with climatology, around the stratopause but this is significantly reduced when the former spectrum is substituted for the latter, and the new ozone parameterization incorporated. The change in spectrum accounts for two-thirds of the improvement. Copyright 2008 by the American Geophysical Union.
More details from the publisher
More details

Coupled chemistry climate model simulations of the solar cycle in ozone and temperature

Journal of Geophysical Research Atmospheres 113:11 (2008)

Authors:

J Austin, K Tourpali, E Rozanov, H Akiyoshi, S Bekki, G Bodeker, C Brühl, N Butchart, M Chipperfield, M Deushi, VI Fomichev, MA Giorgetta, L Gray, K Kodera, F Lott, E Manzini, D Marsh, K Matthes, T Nagashima, K Shibata, RS Stolarski, H Struthers, W Tian

Abstract:

The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lower end of the observed ranges of peak responses. Neither the upper atmospheric effects of energetic particles nor the presence of the quasi biennial oscillation is necessary to simulate the lower stratospheric response in the observed low latitude ozone concentration. Comparisons are also made between model simulations and observed total column ozone. As in previous studies, the model simulations agree well with observations. For those models which cover the full temporal range 1960-2005, the ozone solar signal below 50 hPa changes substantially from the first two solar cycles to the last two solar cycles. Further investigation suggests that this difference is due to an aliasing between the sea surface temperatures and the solar cycle during the first part of the period. The relationship between these results and the overall structure in the tropical solar ozone response is discussed. Further understanding of solar processes requires improvement in the observations of the vertically varying and column integrated ozone. Copyright 2008 by the American Geophysical Union.
More details from the publisher
More details

Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex

Journal of Geophysical Research Atmospheres 113:10 (2008)

Authors:

H Lu, MP Baldwin, LJ Gray, MJ Jarvis

Abstract:

This study documents decadal-scale changes in the Holton and Tan (HT) relationship, i.e., the influence of the lower stratospheric equatorial quasi-biennial oscillation (QBO) on the northern hemisphere (NH) extratropical. circulation. Using a combination of ECMWF ERA-40 Reanalysis and Operational data from 1958-2006, we find that the Arctic stratosphere is indeed warmer under easterly QBO and colder under westerly QBO. During November to January, composite easterly minus westerly QBO signals in zonal wind extend from the lower stratosphere to the upper stratosphere and are centered at ∼5 hPa, 55-65°N with a magnitude of ∼10 m s-1. In temperature, the maximum signal is near ∼20-30 hPa at the pole with a magnitude of ∼4 K. During winter, the dominant feature is a poleward and downward transfer of wind and temperature anomalies from the midlatitude upper stratosphere to the high latitude lower stratosphere. For the first time, a statistically significant decadal scale change of the HT relationship during 1977-1997 is diagnosed. The main feature of the change is that the extratropical QBO signals reverse sign in late winter, resulting in fewer and delayed major stratospheric sudden warmings (SSWs), which occurred more often under westerly QBO. Consistent with earlier studies, it is found that the HT relationship is significantly stronger under solar minima overall, but the solar cycle does not appear to be the primary cause for the detected decadal-scale change. Possible mechanisms related to changes in planetary wave forcing are discussed. Copyright 2008 by the American Geophysical Union.
More details from the publisher
More details

A Stratospheric Consensus Ozone Database for Long-Term Climate Simulations

AGU Fall Meeting Abstracts (2008)

Authors:

R Portmann, G Bodeker, L Gray, B Hassler, V Fioletov, S Frith, C McLinden, W Randel, K Rosenlof, S Solomon, others

HIRDLS Analysis of Gravity Waves in the 2006 Arctic Stratosphere

(2008)

Authors:

Corwin Wright, SM Osprey, JJ Barnett, LJ Gray

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet