Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Dr Severin Habisreutinger

Long Term Visitor

Sub department

  • Condensed Matter Physics
severin.habisreutinger@physics.ox.ac.uk
Telephone: 01865 (2)82327
Robert Hooke Building, room G24
  • About
  • Publications

Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3-xClx perovskite solar cells: kinetics and mechanisms

Advanced Energy Materials Wiley 6:13 (2016) 1600014

Authors:

Andrew J Pearson, Giles E Eperon, Paul E Hopkinson, Severin Habisreutinger, Jacob Tse-Wei Wang, Henry J Snaith, Neil C Greenham

Abstract:

The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market‐competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen‐induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build‐up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge‐extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.
More details from the publisher
Details from ORA
More details

Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

ACS applied materials & interfaces 8:9 (2016) 5981-5989

Authors:

Tomas Leijtens, Tommaso Giovenzana, Severin N Habisreutinger, Jonathan S Tinkham, Nakita K Noel, Brett A Kamino, Golnaz Sadoughi, Alan Sellinger, Henry J Snaith

Abstract:

Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.
More details from the publisher
More details
More details

Stability of Metal Halide Perovskite Solar Cells

Advanced Energy Materials Wiley 5:20 (2015)

Authors:

Tomas Leijtens, Giles E Eperon, Nakita K Noel, Severin N Habisreutinger, Annamaria Petrozza, Henry J Snaith
More details from the publisher

The importance of moisture in hybrid lead halide perovskite thin film fabrication

ACS Nano American Chemical Society 9:9 (2015) 9380-9393

Authors:

Giles Eperon, Severin N Habisreutinger, Tomas Leijtens, Bardo J Bruijnaers, Jacobus J van Franeker, Dane W deQuilettes, Sandeep Pathak, Rebecca J Sutton, Giulia Grancini, David S Ginger, Rene AJ Janssen, Annamaria Petrozza, Henry J Snaith

Abstract:

Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and “self-healing” of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.
More details from the publisher
Details from ORA
More details
More details

Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes.

The journal of physical chemistry letters 5:23 (2014) 4207-4212

Authors:

Severin N Habisreutinger, Tomas Leijtens, Giles E Eperon, Samuel D Stranks, Robin J Nicholas, Henry J Snaith

Abstract:

Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet