Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Hengyue Zhang

Grad Student

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
hengyue.zhang@physics.ox.ac.uk
Denys Wilkinson Building, room UC
ORCID
Personal Website
  • About
  • Publications

WISDOM Project – XXII. A 5 per cent precision CO-dynamical supermassive black hole mass measurement in the galaxy NGC 383

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 537:1 (2025) 520-536

Authors:

Hengyue Zhang, Martin Bureau, Ilaria Ruffa, Michele Cappellari, Timothy A Davis, Pandora Dominiak, Jacob S Elford, Satoru Iguchi, Federico Lelli, Marc Sarzi, Thomas G Williams

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>We present a measurement of the supermassive black hole (SMBH) mass of the nearby lenticular galaxy NGC 383, based on Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the $^{12}$CO(2-1) emission line with an angular resolution of $0.050{\,\rm arcsec}\times 0.024{\,\rm arcsec}$ ($\approx 16\times 8$ pc$^2$). These observations spatially resolve the nuclear molecular gas disc down to $\approx 41\,300$ Schwarzschild radii and the SMBH sphere of influence by a factor of $\approx 24$ radially, better than any other SMBH mass measurement using molecular gas to date. The high resolution enables us to probe material with a maximum circular velocity of $\approx 1040$ km s$^{-1}$, even higher than those of the highest resolution SMBH mass measurements using megamasers. We detect a clear Keplerian increase (from the outside in) of the line-of-sight rotation velocities, a slight offset between the gas disc kinematic (i.e. the position of the SMBH) and morphological (i.e. the centre of the molecular gas emission) centres, an asymmetry of the innermost rotation velocity peaks and evidence for a mild position angle warp and/or non-circular motions within the central $\approx 0.3\,{\rm arcsec}$. By forward modelling the mass distribution and ALMA data cube, we infer an SMBH mass of $(3.58\pm 0.19)\times 10^9$ M$_\odot$ ($1\sigma$ confidence interval), more precise (5 per cent) but consistent within $\approx 1.4\sigma$ with the previous measurement using lower resolution molecular gas data. Our measurement emphasizes the importance of high spatial resolution observations for precise SMBH mass determinations.</jats:p>
More details from the publisher
More details

WISDOM Project – XIX. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 3240-3251

Authors:

Hengyue Zhang, Martin Bureau, Mark D Smith, Michele Cappellari, Timothy A Davis, Pandora Dominiak, Jacob S Elford, Fu-Heng Liang, Ilaria Ruffa, Thomas G Williams

Abstract:

The mass (MBH) of a supermassive black hole (SMBH) can be measured using spatially-resolved kinematics of the region where the SMBH dominates gravitationally. The most reliable measurements are those that resolve the smallest physical scales around the SMBHs. We consider here three metrics to compare the physical scales probed by kinematic tracers dominated by rotation: the radius of the innermost detected kinematic tracer Rmin normalised by respectively the SMBH’s Schwarzschild radius (RSchw ≡ 2GMBH/c2, where G is the gravitational constant and c the speed of light), sphere-of-influence (SOI) radius ($R_\mathrm{SOI}\equiv GM_\mathrm{BH}/\sigma _\mathrm{e}^2$, where σe is the stellar velocity dispersion within the galaxy’s effective radius) and equality radius (the radius Req at which the SMBH mass equals the enclosed stellar mass, MBH = M*(Req), where M*(R) is the stellar mass enclosed within the radius R). All metrics lead to analogous simple relations between Rmin and the highest circular velocity probed Vc. Adopting these metrics to compare the SMBH mass measurements using molecular gas kinematics to those using megamaser kinematics, we demonstrate that the best molecular gas measurements resolve material that is physically closer to the SMBHs in terms of RSchw but is slightly farther in terms of RSOI and Req. However, molecular gas observations of nearby galaxies using the most extended configurations of the Atacama Large Millimeter/sub-millimeter Array can resolve the SOI comparably well and thus enable SMBH mass measurements as precise as the best megamaser measurements.
More details from the publisher
Details from ORA
More details

Dynamical masses and ages of Sirius-like systems

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 524:1 (2023) 695-715

Authors:

Hengyue Zhang, Timothy D Brandt, Rocio Kiman, Alexander Venner, Qier An, Minghan Chen, Yiting Li
More details from the publisher
More details

Cleaning Images with Gaussian Process Regression

The Astronomical Journal American Astronomical Society 162:4 (2021) 139

Authors:

Hengyue Zhang, Timothy D Brandt
More details from the publisher
More details

WISDOM Project–XXVI. Cross-checking supermassive black hole mass estimates from ALMA CO gas kinematics and SINFONI stellar kinematics in the galaxy NGC 4751

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 2039-2059

Authors:

Pandora Dominiak, Michele Cappellari, Martin Bureau, Timothy A Davis, Marc Sarzi, Ilaria Ruffa, Satoru Iguchi, Thomas G Williams, Hengyue Zhang

Abstract:

We present high angular resolution (0.19 arcsec or pc) Atacama Large Millimeter/submillimeter Array observations of the CO(3–2) line emission of the galaxy NGC 4751. The data provide evidence for the presence of a central supermassive black hole (SMBH). Assuming a constant mass-to-light ratio (), we infer a SMBH mass M and a F160W filter stellar M/L, where the first uncertainties are statistical and the second systematic. Assuming a linearly spatially varying , we infer M and , where R is the galactocentric radius. We also present SMBH mass estimates using the Jeans Anisotropic Modelling (JAM) method and Very Large Telescope Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) stellar kinematics. Assuming a cylindrically aligned velocity ellipsoid (JAM), we infer M, and while assuming a spherically aligned velocity ellipsoid (JAM), we infer M. The SMBH mass assuming a constant is statistically consistent with that of JAM, whereas the mass assuming a linearly varying is consistent with both JAM and JAM (within the uncertainties). Our derived masses are larger than (and inconsistent with) one previous stellar dynamical measurement using the Schwarzschild orbit-superposition method and the same SINFONI kinematics.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet