WISDOM Project–XXV. Improving the CO-dynamical supermassive black hole mass measurement in the galaxy NGC 1574 using high spatial resolution ALMA observations
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2540-2552
Abstract:
We present a molecular gas dynamical supermassive black hole (SMBH) mass measurement in the nearby barred lenticular galaxy NGC 1574, using Atacama Large Millimeter/sub-millimeter Array observations of the CO(2-1) emission line with synthesized beam full-widths at half-maximum of ( pc). The observations are the first to spatially resolve the SMBH’s sphere of influence (SoI), resulting in an unambiguous detection of the Keplerian velocity increase due to the SMBH towards the centre of the gas disc. We also detect a previously known large-scale kinematic twist of the CO velocity map, due to a position angle (PA) warp and possible mild non-circular motions, and we resolve a PA warp within the central of the galaxy, larger than that inferred from previous intermediate-resolution data. By forward modelling the data cube, we infer a SMBH mass of M ( confidence interval), slightly smaller than but statistically consistent with the SMBH mass derived from the previous intermediate-resolution data that did not resolve the SoI, and slightly outside the scatter of the SMBH mass–stellar velocity dispersion relation. Our measurement thus emphasizes the importance of observations that spatially resolve the SMBH SoI for accurate SMBH mass measurements and gas dynamical modelling.WISDOM project – XXIII. Star-formation efficiencies of eight early-type galaxies and bulges observed with SITELLE and ALMA
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 540:1 (2025) staf675
Abstract:
Early-type galaxies (ETGs) are known to harbour dense spheroids of stars with scarce star formation (SF). Approximately a quarter of these galaxies have rich molecular gas reservoirs yet do not form stars efficiently. These gas-rich ETGs have properties similar to those of bulges at the centres of spiral galaxies. We use spatially resolved observations (∼100 pc resolution) of warm ionized-gas emission lines (Hβ, [O iii], [N ii], H, and [S ii]) from the imaging Fourier transform spectrograph SITELLE at the Canada-France-Hawaii Telescope and cold molecular gas [12CO(2-1) or 12CO(3-2)] from the Atacama Large Millimeter/submillimeter Array to study the SF properties of eight ETGs and bulges. We use the ionized-gas emission lines to classify the ionization mechanisms and demonstrate a complete absence of regions dominated by SF ionization in these ETGs and bulges, despite abundant cold molecular gas. The ionization classifications also show that our ETGs and bulges are dominated by old stellar populations. We use the molecular gas surface densities and H -derived SF rates (in spiral galaxies outside of the bulges) or upper limits (in ETGs and bulges) to constrain the depletion times (inverse of the SF efficiencies), suggesting again suppressed SF in our ETGs and bulges. Finally, we use the molecular gas velocity fields to measure the gas kinematics, and show that bulge dynamics, particularly the strong shear due to the deep and steep gravitational potential wells, is an important SF regulation mechanism for at least half of our sample galaxies.WISDOM Project – XXII. A 5 per cent precision CO-dynamical supermassive black hole mass measurement in the galaxy NGC 383
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 537:1 (2025) 520-536
Abstract:
<jats:title>ABSTRACT</jats:title> <jats:p>We present a measurement of the supermassive black hole (SMBH) mass of the nearby lenticular galaxy NGC 383, based on Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the $^{12}$CO(2-1) emission line with an angular resolution of $0.050{\,\rm arcsec}\times 0.024{\,\rm arcsec}$ ($\approx 16\times 8$ pc$^2$). These observations spatially resolve the nuclear molecular gas disc down to $\approx 41\,300$ Schwarzschild radii and the SMBH sphere of influence by a factor of $\approx 24$ radially, better than any other SMBH mass measurement using molecular gas to date. The high resolution enables us to probe material with a maximum circular velocity of $\approx 1040$ km s$^{-1}$, even higher than those of the highest resolution SMBH mass measurements using megamasers. We detect a clear Keplerian increase (from the outside in) of the line-of-sight rotation velocities, a slight offset between the gas disc kinematic (i.e. the position of the SMBH) and morphological (i.e. the centre of the molecular gas emission) centres, an asymmetry of the innermost rotation velocity peaks and evidence for a mild position angle warp and/or non-circular motions within the central $\approx 0.3\,{\rm arcsec}$. By forward modelling the mass distribution and ALMA data cube, we infer an SMBH mass of $(3.58\pm 0.19)\times 10^9$ M$_\odot$ ($1\sigma$ confidence interval), more precise (5 per cent) but consistent within $\approx 1.4\sigma$ with the previous measurement using lower resolution molecular gas data. Our measurement emphasizes the importance of high spatial resolution observations for precise SMBH mass determinations.</jats:p>WISDOM Project -- XXII. A 5% precision CO-dynamical supermassive black hole mass measurement in the galaxy NGC 383
(2025)
WISDOM Project -- XIX. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics
(2024)