Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
uv plot

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
github.com/IanHeywood
  • About
  • Galactic Centre Images
  • Publications

DETECTING COLD GAS AT z=3 WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY AND THE SQUARE KILOMETER ARRAY

ASTROPHYSICAL JOURNAL 743:1 (2011) ARTN 84

Authors:

D Obreschkow, I Heywood, S Rawlings
More details from the publisher

Further observations of the intermediate mass black hole candidate ESO 243-49 HLX-1

AIP Conference Proceedings 1248 (2010) 93-96

Authors:

SA Farrell, M Servillat, SR Oates, I Heywood, O Godet, NA Webb, D Barret

Abstract:

The brightest Ultra-Luminous X-ray source HLX-1 in the galaxy ESO 243-49 currently provides strong evidence for the existence of intermediate mass black holes. Here we present the latest multi-wavelength results on this intriguing source in X-ray, UV and radio bands. We have refined the X-ray position to sub-arcsecond accuracy. We also report the detection of UV emission that could indicate ongoing star formation in the region around HLX-1. The lack of detectable radio emission at the X-ray position strengthens the argument against a background AGN. © 2010 American Institute of Physics.
More details from the publisher
More details

Goonhilly: A new site for e-MERLIN and the EVN

Proceedings of Science 125 (2010)

Authors:

HR Klöckner, S Rawlings, I Heywood, R Beswick, TWB Muxlow, ST Garrington, J Hatchell, MG Hoare, MJ Jarvis, I Jones, HJ Van Langevelde

Abstract:

The benefits for the e-MERLIN and EVN arrays of using antennae at the satellite communication station at Goonhilly in Cornwall are discussed. The location of this site - new to astronomy - will provide an almost equal distribution of long baselines in the east-west- and north-south directions, and opens up the possibility to get significantly improved observations of equatorial fields with e-MERLIN. These additional baselines will improve the sensitivity on a set of critical spatial scales and will increase the angular resolution of e-MERLIN by a factor of two. e-MERLIN observations, including many allocated under the e-MERLIN Legacy programme, will benefit from the enhanced angular resolution and imaging capability especially for sources close to or below the celestial equator (where ESO facilities such as ALMA will operate) of including the Goonhilly telescopes. Furthermore, the baselines formed between Goonhilly and the existing stations will close the gap between the baselines of e-MERLIN and those of the European VLBI Network (EVN) and therefore enhance the legacy value of e-MERLIN datasets.
Details from ArXiV

Herschel-ATLAS: Far-infrared properties of radio-selected galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131

Authors:

MJ Hardcastle, JS Virdee, MJ Jarvis, DG Bonfield, L Dunne, S Rawlings, JA Stevens, NM Christopher, I Heywood, T Mauch, D Rigopoulou, A Verma, IK Baldry, SP Bamford, S Buttiglione, A Cava, DL Clements, A Cooray, SM Croom, A Dariush, G De Zotti, S Eales, J Fritz, DT Hill, D Hughes, R Hopwood, E Ibar, RJ Ivison, DH Jones, J Loveday, SJ Maddox, MJ Michałowski, M Negrello, P Norberg, M Pohlen, M Prescott, EE Rigby, ASG Robotham, G Rodighiero, D Scott, R Sharp, DJB Smith, P Temi, E Van Kampen

Abstract:

We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

High Resolution Observations of IRAS FSC10214: A z=2.3 gravitationally lensed starburst/AGN

Proceedings of Science 125 (2010)

Authors:

RP Deane, S Rawlings, I Heywood, HR Klöckner, K Grainge

Abstract:

We present new radio data of IRAS FSC10214, a gravitationally lensed starburst/AGN composite galaxy at z=2.3. Our Bayesian MCMC source plane reconstruction places what we argue to be the AGN core (VLA 8 GHz) and the scattered quasar light (HST rest-frame ultraviolet) at an angle perpendicular to the ultraviolet polarisation angle. The size of and projected distance to the dominant HST UV emission component is roughly consistent with the smooth polarisation angle variation observed with HST polarimetry, suggesting that the modelled offset between these two components is reasonably accurate. Both of these components lie inside a larger 1.6 GHz component (observed with MERLIN) thought to be dominated by a radio lobe based on its steep radio spectrum but very likely to include star formation as well given the substantial molecular mass (MH2 ~ 1012 µ−1 M) in this system. Our lens model finds the HST rest-frame UV component is preferentially magnified due to its closer proximity to the cusp of the caustic. A preferential magnification of the narrow line region dust clouds, where the ultraviolet scattering is assumed to occur, supports previous claims that differential magnification could mask the expected polycyclic aromatic hydrocarbon spectral features in the Spitzer mid-infrared spectrum which broadly trace the star forming regions. fu¨rther predictions will be tested with upcoming EVN and VLBA observations.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet