Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Ian Heywood

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Breakthrough Listen
ian.heywood@physics.ox.ac.uk
  • About
  • Publications

A MeerKAT survey of nearby dwarf novae: I. New detections

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 1894-1907

Authors:

J Kersten, E Körding, PA Woudt, PJ Groot, DRA Williams, I Heywood, DL Coppejans, C Knigge, JCA Miller-Jones, GR Sivakoff, R Fender

Abstract:

A programme to search for radio emission from dwarf-novae-type cataclysmic variables was conducted with the South African MeerKAT radio telescope. The dwarf novae RU Pegasi, V426 Ophiuchi, and IP Pegasi were detected during outburst at L band (1284 MHz central frequency). Previously, only one cataclysmic variable was radio-detected at a frequency this low. We now bring the number to four. With these three newly found radio-emitters, the population of dwarf novae confirmed to be radio-emitting at any frequency reaches 10 systems. We found that the radio luminosity is correlated with the optical luminosity. For V426 Ophiuchi and RU Pegasi we found a radio decline contemporary with the outburst’s optical decline. The peak radio luminosity of dwarf novae in outburst is very similar to that of novalike Cataclysmic Variables and no correlation with orbital period is seen.
More details from the publisher
Details from ORA
More details

Non-thermal filaments and AGN recurrent activity in the galaxy group Nest200047: A LOFAR, uGMRT, MeerKAT, and VLA radio spectral analysis

Astronomy & Astrophysics EDP Sciences 696 (2025) a239

Authors:

M Brienza, K Rajpurohit, E Churazov, I Heywood, M Brüggen, M Hoeft, F Vazza, A Bonafede, A Botteon, G Brunetti, F Gastaldello, I Khabibullin, N Lyskova, A Majumder, HJA Röttgering, TW Shimwell, A Simionescu, RJ van Weeren
More details from the publisher
More details

The jet paths of radio active galactic nuclei and their cluster weather

Astronomy & Astrophysics EDP Sciences 695 (2025) a178

Authors:

E Vardoulaki, V Backöfer, A Finoguenov, F Vazza, J Comparat, G Gozaliasl, IH Whittam, CL Hale, JR Weaver, AM Koekemoer, JD Collier, B Frank, I Heywood, S Sekhar, AR Taylor, S Pinjarkar, MJ Hardcastle, T Shimwell, M Hoeft, SV White, F An, F Tabatabaei, Z Randriamanakoto, MD Filipovic
More details from the publisher
More details

Supernova remnants on the outskirts of the Large Magellanic Cloud

Astronomy & Astrophysics EDP Sciences 693 (2025) l15

Authors:

Manami Sasaki, Federico Zangrandi, Miroslav Filipović, Rami ZE Alsaberi, Jordan D Collier, Frank Haberl, Ian Heywood, Patrick Kavanagh, Bärbel Koribalski, Roland Kothes, Sanja Lazarević, Pierre Maggi, Chandreyee Maitra, Sean Points, Zachary J Smeaton, Velibor Velović
More details from the publisher
More details

MIGHTEE: the continuum survey Data Release 1

Monthly Notices of the Royal Astronomical Society Oxford University Press 536:3 (2024) 2187-2211

Authors:

Catherine Hale, Ian Heywood, Matthew Jarvis, Imogen Whittam, Philip Best, Fangxia An, Rebecca Bowler, Ian Harrison, Allison Matthews, Dan Smith, Russ Taylor, Mattia Vaccari

Abstract:

The MeerKAT International GHz Tiered Extragalactic Exploration Survey (MIGHTEE) is one of the large survey projects using the MeerKAT telescope, covering four fields that have a wealth of ancillary data available. We present Data Release 1 of the MIGHTEE continuum survey, releasing total intensity images and catalogues over ∼20 deg2, across three fields at ∼1.2-1.3 GHz. This includes 4.2 deg2 over the Cosmic Evolution Survey (COSMOS) field, 14.4 deg2 over the XMM Large-Scale Structure (XMM-LSS) field and deeper imaging over 1.5 deg2 of the Extended Chandra Deep Field South (CDFS). We release images at both a lower resolution (7–9 arcsec) and higher resolution (∼5 arcsec). These images have central rms sensitivities of ∼1.3 −2.7 μJy beam−1 (∼1.2 −3.6 μJy beam−1) in the lower (higher) resolution images respectively. We also release catalogues comprised of ∼144 000 (∼114 000) sources using the lower (higher) resolution images. We compare the astrometry and flux-density calibration with the Early Science data in the COSMOS and XMM-LSS fields and previous radio observations in the CDFS field, finding broad agreement. Furthermore, we extend the source counts at the ∼10 μJy level to these larger areas (∼20 deg2) and, using the areal coverage of MIGHTEE we measure the sample variance for differing areas of sky. We find a typical sample variance of 10-20percnt for 0.3 and 0.5 sq. deg. sub-regions at S1.4 ≤ 200 μJy, which increases at brighter flux densities, given the lower source density and expected higher galaxy bias for these sources.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet