Plume Activity on Europa: Current Knowledge and Search Strategy for Europa Clipper
The Planetary Science Journal IOP Publishing 6:8 (2025) 182
Abstract:
The presence of cryovolcanic activity in the form of geyser-like plumes at Jupiter’s moon Europa is a much-debated topic. As an active plume could allow direct sampling by a passing spacecraft of a potentially habitable interior environment, the detection and analysis of ongoing plume activity would be of the highest scientific value. In the past decade, several studies have interpreted different remote and in situ observations as providing evidence for large gaseous plumes at different locations on Europa. However, definitive proof is elusive, and visible imaging data taken during spacecraft flybys do not reveal clear indications of ongoing activity. After arrival at Jupiter in 2030, the NASA Europa Clipper spacecraft will systematically search for and constrain plume activity at Europa utilizing a variety of investigations and methods during, before, and after close flybys. Given the lack of a confirmed plume detection to date, the Europa Clipper science team has adopted a global plume search strategy, not focusing on any specific geographical area or any specific type of observation. This global search strategy assigns enhanced value to data obtained early in the mission, which allows time for further observations and characterization of any observed plume at later times. Here we describe the current state of knowledge on plume activity, the Europa Clipper search strategy, and the role of various instruments on the Europa Clipper payload in this search.Lucy Mission Search Plans for Activity around Its Jovian Trojan Flyby Targets
The Planetary Science Journal IOP Publishing 6:7 (2025) 177
Abstract:
Activity in small bodies, defined here as the episodic or continuous release of material, was long thought to be exclusively a behavior of comets, but it has since been discovered in some centaurs, main-belt asteroids, and near-Earth asteroids. To date, however, no activity has been discovered on Jovian trojan asteroids, the target of NASA’s Lucy Discovery Program mission. Although Lucy was originally conceived without studies of or searches for trojan activity, it was realized in 2016–2017 that the spacecraft and scientific payload aboard Lucy could provide unique and meaningful constraints or detections on activity in these trojans. Here we describe how the Lucy mission will search for such activity using (i) its terminal tracking navigation camera to search for wide-field coma scattered light, (ii) its Lucy Long Range Reconnaissance Imager narrow-angle camera to also search for scattered light from any coma or jets, and (iii) its Multispectral Visible Imaging Camera imager to search for CN emission (a common activity tracer species in comets). Sensitivity estimates for each of those measurements are discussed below.An Overview of Lucy L'Ralph Observations at (52246) Donaldjohanson and (152830) Dinkinesh: Visible and Near-Infrared Data of Two Main Belt Asteroids
Copernicus Publications (2025)
Abstract:
Lucy is the first mission to Jupiter Trojan asteroids, primitive bodies preserving crucial evidence of Solar System formation and evolution [1]. En route to its primary science encounters with the L4 swarm Trojans (2027-2028) and L5 swarm (2033), the spacecraft executed a flyby of asteroids (152830) Dinkinesh on November 1, 2023 and (52246) Donaldjohanson (DJ) on April 20, 2025. These Main Belt asteroid flybys function as operational rehearsals for the mission's Trojan targets. This work examines the performance of L'Ralph, a core Lucy science instrument, during these encounters, including data collection, instrument behavior, and analysis of the acquired datasets.L'Ralph integrates two complementary imaging systems spanning visible to near-infrared wavelengths (0.35-4 μm) [2]. The instrument has two focal plane assemblies: the Multi-spectral Visible Imaging Camera (MVIC) operating at 350-950 nm and the Linear Etalon Imaging Spectral Array (LEISA) covering 0.97-3.95 μm. LEISA delivers hyperspectral mapping capabilities with variable spectral resolving power (50-160, ΔλDeveloping Oxford’s Enceladus Thermal Mapper (ETM)
Copernicus Publications (2025)
Abstract:
Introduction: Enceladus Thermal Mapper (ETM) is an Oxford-built high-heritage instrument that is being developed for outer solar system operations. ETM is based upon the design of Lunar Thermal Mapper (LTM, launched on Lunar Trailblazer, Fig. 1). It has a strong heritage story, including MIRMIS (on Comet Interceptor), Compact Modular Sounder (on TechDemoSat-1) and filters shared with Lunar Diviner (on Lunar Reconnaissance Orbiter). ETM is a miniaturized thermal infrared multispectral imager, with space for 15 spectral channels (bandpasses) that can be tailored to the mission requirements. It consists of a five-mirror telescope and optical system and an uncooled microbolometer detector array. Real-time calibration is achieved using a motorized mirror to point to an onboard blackbody target and empty space. ETM has an IFOV of 35 mm, so assuming a 100 30 km orbit it will have a spatial resolution of 40 to 70 m/pixel and a swath width of 14 - 27 km. ETM Updates: Through UK Space Agency funding we have developed three areas of ETM: its filter profile, radiation tolerance and sensitivity to Enceladus-like surfaces. Filters: ETM is a push broom thermal mapper, which works by the detector being swept over a surface. Each of the detector’s 15 channels is made up 16 rows, which are coadded to increase the signal to noise. A recently completed preliminary study has updated ETM’s bandpasses to include filters between 6.25 mm and 200 mm to enable it to detect Enceladus’ polar winter (170 K). Depending on the mission goals not all channels need to be utilised to achieve this, making some available for additional studies (e.g. searching for salt). Radiation: The radiation environments of Enceladus are vastly different to those of the Moon. Recent radiation testing and analysis showed that the majority of ETM’s existing design is already highly radiation tolerant. With some additional shielding and one component change all parts can reach the radiation hardness required to operate in the Saturn-system. The additional shielding may be provided by the spacecraft structure, depending on the adopted design. Sensitivity: ETM’s sensitivity to cryogenic surfaces is currently predicted through a well-characterised model. However, as part of the LTM calibration campaign we plan to directly measure its sensitivity toDiving deep into Mimas’ ocean: interior structure, evolution, and detection using heat flow
Copernicus Publications (2025)