Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Enceladus' Damascus Sulci

Dr Carly Howett

Associate Professor of Space Instrumentation

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary surfaces
  • Solar system
  • Space instrumentation
carly.howett@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory
  • About
  • Publications

The formation of Charon's red poles from seasonally cold-trapped volatiles.

Nature 539:7627 (2016) 65-68

Authors:

WM Grundy, DP Cruikshank, GR Gladstone, CJA Howett, TR Lauer, JR Spencer, ME Summers, MW Buie, AM Earle, K Ennico, J Wm Parker, SB Porter, KN Singer, SA Stern, AJ Verbiscer, RA Beyer, RP Binzel, BJ Buratti, JC Cook, CM Dalle Ore, CB Olkin, AH Parker, S Protopapa, E Quirico, KD Retherford, SJ Robbins, B Schmitt, JA Stansberry, OM Umurhan, HA Weaver, LA Young, AM Zangari, VJ Bray, AF Cheng, WB McKinnon, RL McNutt, JM Moore, F Nimmo, DC Reuter, PM Schenk, New Horizons Science Team

Abstract:

A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.
More details from the publisher
More details

Charon's light curves, as observed by New Horizons’ Ralph color camera (MVIC) on approach to the Pluto system

Icarus Elsevier 287 (2016) 152-160

Authors:

Cja Howett, K Ennico, Cb Olkin, Mw Buie, Aj Verbiscer, Am Zangari, Ah Parker, Dc Reuter, Wm Grundy, Ha Weaver, La Young, Sa Stern

Abstract:

Light curves produced from color observations taken during New Horizons’ approach to the Pluto-system by its Multi-spectral Visible Imaging Camera (MVIC, part of the Ralph instrument) are analyzed. Fifty seven observations were analyzed, they were obtained between 9th April and 3rd July 2015, at a phase angle of 14.5° to 15.1°, sub-observer latitude of 51.2 °N to 51.5 °N, and a sub-solar latitude of 41.2°N. MVIC has four color channels; all are discussed for completeness but only two were found to produce reliable light curves: Blue (400–550 nm) and Red (540–700 nm). The other two channels, Near Infrared (780–975 nm) and Methane-Band (860–910 nm), were found to be potentially erroneous and too noisy respectively. The Blue and Red light curves show that Charon's surface is neutral in color, but slightly brighter on its Pluto-facing hemisphere. This is consistent with previous studies made with the Johnson B and V bands, which are at shorter wavelengths than that of the MVIC Blue and Red channel respectively.
More details from the publisher
Details from ORA

Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data

(2016)

Authors:

S Protopapa, WM Grundy, DC Reuter, DP Hamilton, CM Dalle Ore, JC Cook, DP Cruikshank, B Schmitt, S Philippe, E Quirico, RP Binzel, AM Earle, K Ennico, CJA Howett, AW Lunsford, CB Olkin, A Parker, KN Singer, A Stern, AJ Verbiscer, HA Weaver, LA Young, the New Horizons Science Team
More details from the publisher

Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions

Acta Astronautica Elsevier 128 (2016) 628-639

Authors:

Shahid Aslam, Michael Amato, Neil Bowles, Simon Calcutt, Tilak Hewagama, Joseph Howard, Carly Howett, Wen-Ting Hsieh, Terry Hurford, Jane Hurley, Patrick Irwin, Donald E Jennings, Ernst Kessler, Brook Lakew, Mark Loeffler, Michael Mellon, Anthony Nicoletti, Conor A Nixon, Nathaniel Putzig, Gerard Quilligan, Julie Rathbun, Marcia Segura, John Spencer, Joseph Spitale, Garrett West

Abstract:

The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8–200 µm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.
More details from the publisher
Details from ORA
More details

The Geology of Pluto and Charon Through the Eyes of New Horizons

(2016)

Authors:

Jeffrey M Moore, William B McKinnon, John R Spencer, Alan D Howard, Paul M Schenk, Ross A Beyer, Francis Nimmo, Kelsi N Singer, Orkan M Umurhan, Oliver L White, S Alan Stern, Kimberly Ennico, Cathy B Olkin, Harold A Weaver, Leslie A Young, Richard P Binzel, Marc W Buie, Bonnie J Buratti, Andrew F Cheng, Dale P Cruikshank, Will M Grundy, Ivan R Linscott, Harold J Reitsema, Dennis C Reuter, Mark R Showalter, Veronica J Bray, Carrie L Chavez, Carly JA Howett, Tod R Lauer, Carey M Lisse, Alex Harrison Parker, SB Porter, Simon J Robbins, Kirby Runyon, Ted Stryk, Henry B Throop, Constantine CC Tsang, Anne J Verbiscer, Amanda M Zangari, Andrew L Chaikin, Don E Wilhelms
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet