Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Robert Ishmukhametov

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics

Research groups

  • Oxford Molecular Motors
Robert.Ishmukhametov@physics.ox.ac.uk
Clarendon Laboratory, room 071,Old Stores,207,273
  • About
  • Publications

Changes within the central stalk of E. coli F1Fo ATP synthase observed after addition of ATP

Communications Biology Springer Nature 6 (2023) 26

Authors:

Meghna Sobti, Yi C Zeng, James L Walshe, Simon HJ Brown, Robert Ishmukhametov, Alastair G Stewart

Abstract:

F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.

More details from the publisher
Details from ORA
More details
More details

A comprehensive study of biocompatibility of detonation nanodiamonds

Journal of Molecular Liquids Elsevier 332 (2021) 115763

Authors:

Gregory M Berdichevskiy, Lubov V Vasina, Sergei V Ageev, Anatolii A Meshcheriakov, Mikhail A Galkin, Robert R Ishmukhametov, Alexei V Nashchekin, Demid A Kirilenko, Andrey V Petrov, Sofia D Martynova, Konstantin N Semenov, Vladimir V Sharoyko

Abstract:

The article describes a complex study of detonation nanodiamonds (DND) aqueous dispersions. In this research, DND sample was characterised by means of IR, NMR spectroscopy, TEM, thermogravimetric analysis, size distribution, and ζ-potentials. It was shown that DND sample includes several surface groups, mainly hydroxylic, carboxylic, and carbonyl ones. Dynamic light scattering results revealed that in the concentration range C = 0.002–0.3 wt%, DND nanoparticles size is equal to 55 ± 5 nm. It was demonstrated that DND possessed weak antiradical activity, had an inhibitory effect on F1F0-ATPase activity, almost did not affect platelet aggregation, formed a stronger complex with human serum albumin (HSA) in subdomain IB (digitoxin, Kb = 20.0 ± 2.4 l·g−1) and a less strong complex in subdomain IIA (warfarin, Kb = 3.7 ± 0.1 l·g−1), inhibited the esterase activity of HSA, DND dispersions (C = 0.0012–0.15 wt%) revealed genotoxic effect towards PBMCs, did not affect cellular proliferation in the experiment with HEK293 cell line, did not reveal cytotoxic effect up to 0.01 wt%. Using DFT and MD approaches allowed us to perform a simulation of interaction between DND nanoparticle and water molecules.
More details from the publisher
Details from ORA
More details
More details

Motile ghosts of the halophilic archaeon, Haloferax volcanii

Proceedings of the National Academy of Sciences National Academy of Sciences 117:43 (2020) 26766-26772

Authors:

Yoshiaki Kinosita, Nagisa Mikami, Zhengqun Li, Frank Braun, Tessa EF Quax, Chris van der Does, Robert Ishmukhametov, Sonja-Verena Albers, Richard M Berry

Abstract:

Archaea swim using the archaellum (archaeal flagellum), a reversible rotary motor consisting of a torque-generating motor and a helical filament, which acts as a propeller. Unlike the bacterial flagellar motor (BFM), ATP (adenosine-5′-triphosphate) hydrolysis probably drives both motor rotation and filamentous assembly in the archaellum. However, direct evidence is still lacking due to the lack of a versatile model system. Here, we present a membrane-permeabilized ghost system that enables the manipulation of intracellular contents, analogous to the triton model in eukaryotic flagella and gliding Mycoplasma. We observed high nucleotide selectivity for ATP driving motor rotation, negative cooperativity in ATP hydrolysis, and the energetic requirement for at least 12 ATP molecules to be hydrolyzed per revolution of the motor. The response regulator CheY increased motor switching from counterclockwise (CCW) to clockwise (CW) rotation. Finally, we constructed the torque–speed curve at various [ATP]s and discuss rotary models in which the archaellum has characteristics of both the BFM and F1-ATPase. Because archaea share similar cell division and chemotaxis machinery with other domains of life, our ghost model will be an important tool for the exploration of the universality, diversity, and evolution of biomolecular machinery.
More details from the publisher
Details from ORA
More details
More details

Cryo-EM structures provide insight into how E. coli F1Fo ATP synthase accommodates symmetry mismatch

Nature Communications Springer Nature 11:1 (2020) 2615

Authors:

Meghna Sobti, James L Walshe, Di Wu, Robert Ishmukhametov, Yi C Zeng, Carol V Robinson, Richard M Berry, Alastair G Stewart

Abstract:

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1–3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.
More details from the publisher
Details from ORA
More details
More details

ATP synthase: expression, purification, and function

Chapter in Protein Nanotechnology: Protocols, Instrumentation, and Applications, Humana Press (2019) 73-84

Authors:

Meghna Sobti, Robert Ishmukhametov, Alastair G Stewart

Abstract:

ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet