Expected performance of the ATLAS experiment : detector, trigger and physics
CERN (2009)
Abstract:
A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.The radiation tolerance of specific optical fibres exposed to 650 kGy(Si) of ionizing radiation
Journal of Instrumentation 4 (2009) 07
Abstract:
The LHC upgrade will extensively increase the area of silicon detectors used in the ATLAS experiment and require substantial changes to the readout system of both the ATLAS and CMS experiments. The two experiments are expected to use optical systems for part of the data and control paths which must withstand levels of radiation equivalent to a dose of approximately 400 kGy(Si) at 30 cm from the collision region (including a safety factor of 1.5). As part of the search for acceptably radiation hard optical fibres, four Graded Index multimode (GRIN) optical fibres and one single-mode (SM) fibre were tested to 650 kGy(Si) equivalent dose. One of the GRIN fibres was also tested at 5 different dose rates, in order to understand the dose rate effects. These tests have validated the radiation tolerance of a single-mode fibre and two multimode fibres for use at the SLHC for warm operation. Some interesting features of the time dependence of the fibre radiation damage and future plans are discussed.The versatile link, a common project for super-LHC
Journal of Instrumentation 4 (2009) 12
Abstract:
A common project to develop a bi-directional, radiation tolerant, high speed (4.8 Gb/s) optical link for future high energy physics experiments is described. Due to be completed in 2012, it targets the upgrade programs of detectors installed at CERN’s Large Hadron Collider (LHC). The development of radiation and magnetic field tolerant opto-electronic devices, fibre and connectors is described. Both Single-Mode and Multi-Mode versions of the system operating respectively at 850 nm and 1310 nm wavelength are proposed. First results at component and system level are presented, based mostly on commercially available devices.Engineering for the ATLAS SemiConductor Tracker (SCT) End-cap
Journal of Instrumentation 3:5 (2008)