Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector
Physical Review D - Particles, Fields, Gravitation and Cosmology 88:7 (2013)
Abstract:
A search is presented for microscopic black holes in a like-sign dimuon final state in proton-proton collisions at √s=8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6±0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% C.L. lower limits on microscopic black hole masses are set for different model assumptions. © 2013 CERN. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Performance of jet substructure techniques for large-R jets in proton-proton collisions at √s=7 TeV using the ATLAS detector
Journal of High Energy Physics 2013:9 (2013)
Abstract:
This paper presents the application of a variety of techniques to study jet substructure. The performance of various modified jet algorithms, or jet grooming techniques, for several jet types and event topologies is investigated for jets with transverse momentum larger than 300 GeV. Properties of jets subjected to the mass-drop filtering, trimming, and pruning algorithms are found to have a reduced sensitivity to multiple proton-proton interactions, are more stable at high luminosity and improve the physics potential of searches for heavy boosted objects. Studies of the expected discrimination power of jet mass and jet substructure observables in searches for new physics are also presented. Event samples enriched in boosted W and Z bosons and top-quark pairs are used to study both the individual jet invariant mass scales and the efficacy of algorithms to tag boosted hadronic objects. The analyses presented use the full 2011 ATLAS dataset, corresponding to an integrated luminosity of 4.7 ± 0.1 fb-1 from proton-proton collisions produced by the Large Hadron Collider at a centre-of-mass energy of √s=7 TeV. [Figure not available: see fulltext.] © 2013 Cern for the benefit of the ATLAS collaboration.Search for new phenomena in events with three charged leptons at √s=7 TeV with the ATLAS detector
Physical Review D - Particles, Fields, Gravitation and Cosmology 87:5 (2013)
Abstract:
A generic search for anomalous production of events with at least three charged leptons is presented. The search uses a pp-collision data sample at a center-of-mass energy of √s=7 TeV corresponding to 4.6 fb-1 of integrated luminosity collected in 2011 by the ATLAS detector at the CERN Large Hadron Collider. Events are required to contain at least two electrons or muons, while the third lepton may either be an additional electron or muon, or a hadronically decaying tau lepton. Events are categorized by the presence or absence of a reconstructed tau-lepton or Z-boson candidate decaying to leptons. No significant excess above backgrounds expected from Standard Model processes is observed. Results are presented as upper limits on event yields from non-Standard-Model processes producing at least three prompt, isolated leptons, given as functions of lower bounds on several kinematic variables. Fiducial efficiencies for model testing are also provided. The use of the results is illustrated by setting upper limits on the production of doubly charged Higgs bosons decaying to same-sign lepton pairs.Jet energy resolution in proton-proton collisions at √ s = 7 TeV recorded in 2010 with the ATLAS detector
European Physical Journal C 73:3 (2013)
Abstract:
The measurement of the jet energy resolution is presented using data recorded with the ATLAS detector in proton-proton collisions at √ s = 7 TeV. The sample corresponds to an integrated luminosity of 35 pb−1. Jets are reconstructed from energy deposits measured by the calorimeters and calibrated using different jet calibration schemes. The jet energy resolution is measured with two different in situ methods which are found to be in agreement within uncertainties. The total uncertainties on these measurements range from 20 % to 10 % for jets within |y| < 2.8 and with transverse momenta increasing from 30 GeV to 500 GeV. Overall, the Monte Carlo simulation of the jet energy resolution agrees with the data within 10 %.Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
European Physical Journal C 73:3 (2013)