Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

On the redshift cut-off for steep-spectrum radio sources

ArXiv astro-ph/0106473 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Chris J Willott, Katherine M Blundell, Steve Eales, Mark Lacy

Abstract:

We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the `most luminous' steep-spectrum radio sources. Although intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF which incorporate distributions in radio spectral shape and linear size as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between z~2.5 and z~4.5. We find this model is favoured over a model with similar evolutionary behaviour to that of optically-selected quasars (i.e. a roughly Gaussian distribution in redshift) with a probability ratio of ~25:1 and ~100:1 for spatially-flat cosmologies with Omega_Lambda = 0 and Omega_Lambda = 0.7 respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock (1990) and Jarvis & Rawlings (2000), in line with the expectations of Unified Schemes.
Details from ArXiV
More details from the publisher

A sample of 6C radio sources designed to find objects at redshift > 4: II --- spectrophotometry and emission line properties

ArXiv astro-ph/0106127 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Mark Lacy, Katherine M Blundell, Andrew J Bunker, Steve Eales, Richard Saunders, Hyron Spinrad, Daniel Stern, Chris J Willott

Abstract:

(Abridged) This is the second in a series of three papers which present and interpret basic observational data on the 6C* 151-MHz radio sample: a low-frequency selected sample which exploits filtering criteria based on radio properties (steep spectral index and small angular size) to find radio sources at redshift z > 4 within a 0.133sr patch of sky. We present results of a programme of optical spectroscopy which has yielded redshifts in the range 0.5 < z < 4.4 for the 29 sources in the sample, all but six of which are secure. We find that the fil tering criteria used for 6C* are very effective in excluding the low-redshift, low-luminosity radio sources: the median redshift of 6C* is z~1.9 compared to z~1.1 for a complete sample matched in 151-MHz flux density. By combining the emission-line dataset for the 6C* radio sources with those for the 3CRR, 6CE and 7CRS samples we establish that z > 1.75 radio galaxies follow a rough proportionality between Lyalpha- and 151 MHz-luminosity which, like similar correlations seen in samples of lower-redshift radio sources, are indicative of a primary link between the power in the source of the photoionising photons (most likely a hidden quasar nucleus) and the power carried by the radio jets. We argue that radio sources modify their environments and that the range of emission-line properties seen is determined more by the range of source age than by the range in ambient environment. This is in accord with the idea that all high-redshift, high-luminosity radio sources are triggered in similar environments, presumably recently collapsed massive structures.
Details from ArXiV
More details from the publisher

A sample of 6C radio sources designed to find objects at redshift > 4: III --- imaging and the radio galaxy K-z relation

ArXiv astro-ph/0106130 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Steve Eales, Katherine M Blundell, Andrew J Bunker, Steve Croft, Ross J McLure, Chris J Willott

Abstract:

In this paper, the third and final of a series, we present complete K-band imaging and some complementary I-band imaging of the filtered 6C* sample. We find no systematic differences between the K-z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high-redshift (z >2). Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2. In a particular spatially-flat universe with a cosmological constant, the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (~5 Lstar), and a low dispersion (sigma ~ 0.5 mag) which formed their stars at epochs corresponding to z >~2.5. This result is in line with recent sub-mm studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.
Details from ArXiV
More details from the publisher

The radio galaxy K-z relation to z ~ 4.5

ArXiv astro-ph/0103364 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Steve Eales, Katherine M Blundell, Chris J Willott

Abstract:

Using a new radio sample, 6C* designed to find radio galaxies at z > 4 along with the complete 3CRR and 6CE sample we extend the radio galaxy K-z relation to z~4.5. The 6C* K-z data significantly improve delineation of the K-z relation for radio galaxies at high redshift (z > 2). Accounting for non-stellar contamination, and for correlations between radio luminosity and estimates of stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z > 2. This indicates that we are not probing into the formation epoch until at least z > 3.
Details from ArXiV

On the redshift cut-off for flat-spectrum radio sources

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 319:1 (2000) 121-136

Authors:

MJ Jarvis, S Rawlings
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 90
  • Page 91
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • Current page 97
  • Page 98
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet