Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Department of Physics
Credit: Jack Hobhouse

Dr Liz Jenkinson

Research Facilitator

Sub department

  • Professional and support services
  • About
  • Publications

Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert.

Proceedings of the National Academy of Sciences of the United States of America 103:20 (2006) 7613-7618

Authors:

Elizabeth R Jenkinson, James PJ Chong

Abstract:

The minichromosome maintenance (MCM) proteins are essential conserved proteins required for DNA replication in archaea and eukaryotes. MCM proteins are believed to provide the replicative helicase activity that unwinds template DNA ahead of the replication fork. Consistent with this hypothesis, MCM proteins can form hexameric complexes that possess ATP-dependent DNA unwinding activity. The molecular mechanism by which the energy of ATP hydrolysis is harnessed to DNA unwinding is unknown, although the ATPase activity has been attributed to a highly conserved AAA+ family ATPase domain. Here we show that changes to N- and C-terminal motifs in the single MCM protein from the archaeon Methanothermobacter thermautotrophicus (MthMCM) can modulate ATP hydrolysis, DNA binding, and duplex unwinding. Furthermore, these motifs appear to influence the movement of the beta-alpha-beta insert in helix-2 of the MCM ATPase domain. Removal of this motif from MthMCM increased dsDNA-stimulated ATP hydrolysis and increased the affinity of the mutant complex for ssDNA and dsDNA. Deletion of the helix-2 insert additionally resulted in the abrogation of DNA unwinding. Our results provide significant insight into the molecular mechanisms used by the MCM helicase to both regulate and execute DNA unwinding.
More details from the publisher
More details

Identification of a novel DNA methyltransferase activity from Bacillus thuringiensis.

Current microbiology 47:2 (2003) 144-145

Authors:

Elizabeth Jenkinson, Neil Crickmore

Abstract:

A DNA methyltransferase activity was identified in a strain of Bacillus thuringiensis that was found to protect DNA from cleavage by the restriction endonuclease HaeIII at overlapping sites. Site-directed mutagenesis was used to confirm therecognition sequence of the methyltransferase as ACGGC.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet