Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
The Oxford 750MHz NMR Spectrometer

The Oxford 750MHz NMR Spectrometer

Prof Jonathan Jones

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • NMR quantum computing
jonathan.jones@physics.ox.ac.uk
  • About
  • Publications

Group epitope mapping considering relaxation of the ligand (GEM-CRL): including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments.

J Magn Reson 203:1 (2010) 1-10

Authors:

Sebastian Kemper, Mitul K Patel, James C Errey, Benjamin G Davis, Jonathan A Jones, Timothy DW Claridge

Abstract:

In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.
More details from the publisher
More details

Spin-selective reactions of radical pairs act as quantum measurements

(2010)

Authors:

Jonathan A Jones, Peter J Hore
More details from the publisher

Spin-selective reactions of radical pairs act as quantum measurements

ArXiv 1002.2377 (2010)

Authors:

Jonathan A Jones, Peter J Hore

Abstract:

Since the 1970s, spin-selective reactions of radical pairs have been modelled theoretically by adding phenomenological rate equations to the quantum mechanical equation of motion of the radical pair spin density matrix. Here, using a quantum measurement approach, we derive an alternative set of rate expressions which predict a faster decay of coherent superpositions of the singlet and triplet radical pair states. The difference between the two results, however, is not dramatic and would probably be difficult to distinguish experimentally from decoherence arising from other sources.
Details from ArXiV
More details from the publisher

Magnetic field sensors using 13-spin cat states

PHYSICAL REVIEW A 82:2 (2010) ARTN 022330

Authors:

Stephanie Simmons, Jonathan A Jones, Steven D Karlen, Arzhang Ardavan, John JL Morton
More details from the publisher
Details from ArXiV

Preparing pseudopure states with controlled-transfer gates

PHYSICAL REVIEW A 82:3 (2010) ARTN 032315

Authors:

Minaru Kawamura, Benjamin Rowland, Jonathan A Jones
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet