Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Michael Jones

Professor of Experimental Cosmology

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Cosmology
  • Experimental radio cosmology
  • C-BASS
  • The Square Kilometre Array (SKA)
Mike.Jones@physics.ox.ac.uk
Telephone: 01865 (2)73441
Denys Wilkinson Building, room 758
  • About
  • Publications

Completeness and confusion in the identification of Lyman-break galaxies

HY-REDSHIFT UNIVERSE: GALAXY FORMATION AND EVOLUTION AT HIGH REDSHIFT 193 (1999) 513-516

Authors:

G Cotter, T Haynes, JC Baker, ME Jones, R Saunders
More details

Detection of a Cosmic Microwave Background Decrement toward the z = 3.8 Quasar Pair PC 1643+4631A, B

The Astrophysical Journal American Astronomical Society 479:1 (1997) l1-l3

Authors:

Michael E Jones, Richard Saunders, Joanne C Baker, Garret Cotter, Alastair Edge, Keith Grainge, Toby Haynes, Anthony Lasenby, Guy Pooley, Huub Röttgering
More details from the publisher
More details

Optical and infrared investigation toward the z = 3.8 quasar pair PC 1643+4631A, B

Astrophysical Journal Letters 479:1 (1997) L5-L8

Authors:

R Saunders, JC Baker, MN Bremer, AJ Bunker, G Cotter, S Eales, K Grainge, T Haynes, ME Jones, M Lacy, G Pooley, S Rawlings

Abstract:

In a companion Letter, Jones et al. report the discovery of a cosmic microwave background decrement, indicative of a distant cluster with mass ∼1015 M⊙, toward the quasar pair PC 1643+4631A, B (z = 3.79, 3.83, separation 1980). To search for the cluster responsible, we have obtained R-, J-, and K-band images of the field and have also carried out optical spectroscopy of selected objects in it. No such cluster is evident in these images. Assuming that the cluster causing the decrement is similar to massive clusters already known, our magnitude limits imply that it must lie at about or beyond z = 1. This provides independent support for the X-ray-based distance argument of Jones et al. The cluster must gravitationally lens objects behind it; for a cluster z around 1-2, the Einstein ring radius for sources at z ≈ 3.8 is ∼100″. Simple modeling, producing simultaneously the Sunyaev-Zeldovich effect and the lensing, shows that the source positions of quasars A and B lie within 1100 of each other and may indeed be coincident. The two quasar spectra are found to be remarkably similar apart from their 1% redshift difference. Assuming that A and B are images of a single quasar, we present a possible explanation of this difference.
More details from the publisher
More details
Details from ArXiV

First Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

Authors:

R Cepeda-Arroita, S Harper, C Dickinson, Ja Rubiño-Martín, Rt Génova-Santos, Angela C Taylor, Tj Pearson, M Ashdown, A Barr, Rb Barreiro, B Casaponsa, Fj Casas, Hc Chiang, R Fernandez-Cobos, Rdp Grumitt, F Guidi, Hm Heilgendorff, D Herranz, Lrp Jew, Jl Jonas, Michael E Jones, A Lasenby, J Leech, Jp Leahy, E Martínez-González, Mw Peel, F Poidevin, L Piccirillo, Acs Readhead, R Rebolo, B Ruiz-Granados, J Sievers, F Vansyngel, P Vielva, Ra Watson

Abstract:

Anomalous Microwave Emission (AME) is a significant component of Galactic diffuse emission in the frequency range $10$-$60\,$GHz and a new window into the properties of sub-nanometre-sized grains in the interstellar medium. We investigate the morphology of AME in the $\approx10^{\circ}$ diameter $\lambda$ Orionis ring by combining intensity data from the QUIJOTE experiment at $11$, $13$, $17$ and $19\,$GHz and the C-Band All Sky Survey (C-BASS) at $4.76\,$GHz, together with 19 ancillary datasets between $1.42$ and $3000\,$GHz. Maps of physical parameters at $1^{\circ}$ resolution are produced through Markov Chain Monte Carlo (MCMC) fits of spectral energy distributions (SEDs), approximating the AME component with a log-normal distribution. AME is detected in excess of $20\,\sigma$ at degree-scales around the entirety of the ring along photodissociation regions (PDRs), with three primary bright regions containing dark clouds. A radial decrease is observed in the AME peak frequency from $\approx35\,$GHz near the free-free region to $\approx21\,$GHz in the outer regions of the ring, which is the first detection of AME spectral variations across a single region. A strong correlation between AME peak frequency, emission measure and dust temperature is an indication for the dependence of the AME peak frequency on the local radiation field. The AME amplitude normalised by the optical depth is also strongly correlated with the radiation field, giving an overall picture consistent with spinning dust where the local radiation field plays a key role.
More details from the publisher
More details
Details from ArXiV

First Detection of Spectral Variations of Anomalous Microwave Emission with QUIJOTE and C-BASS

Authors:

R Cepeda-Arroita, S Harper, C Dickinson, Ja Rubiño-Martín, Rt Génova-Santos, Angela C Taylor, Tj Pearson, M Ashdown, A Barr, Rb Barreiro, B Casaponsa, Fj Casas, Hc Chiang, R Fernandez-Cobos, Rdp Grumitt, F Guidi, Hm Heilgendorff, D Herranz, Lrp Jew, Jl Jonas, Michael E Jones, A Lasenby, J Leech, Jp Leahy, E Martínez-González, Mw Peel, F Poidevin, L Piccirillo, Acs Readhead, R Rebolo, B Ruiz-Granados, J Sievers, F Vansyngel, P Vielva, Ra Watson

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet