Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
sky and dish

Aris Karastergiou

Professor of Astrophysics and Fellow at St Edmund Hall

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Aris.Karastergiou@physics.ox.ac.uk
Telephone: 01865 (2)73642
Denys Wilkinson Building, room 603C
  • About
  • Publications

Limits on absorption from a 332-MHz survey for fast radio bursts

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 493:3 (2020) 4418-4427

Authors:

KM Rajwade, MB Mickaliger, BW Stappers, CG Bassa, RP Breton, A Karastergiou, EF Keane
More details from the publisher
Details from ArXiV

The Thousand-Pulsar-Array programme on MeerKAT - I. Science objectives and first results

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 493:3 (2020) 3608-3615

Authors:

Simon Johnston, A Karastergiou, Mj Keith, X Song, P Weltevrede, F Abbate, M Bailes, S Buchner, F Camilo, M Geyer, B Hugo, A Jameson, M Kramer, A Parthasarathy, Dj Reardon, A Ridolfi, M Serylak, Rm Shannon, R Spiewak, W van Straten, V Venkatraman Krishnan, F Jankowski, Bw Meyers, L Oswald, B Posselt, C Sobey, A Szary, J van Leeuwen

Abstract:

© 2020 The Author(s). We report here on initial results from the Thousand-Pulsar-Array (TPA) programme, part of the Large Survey Project 'MeerTime' on the MeerKAT telescope. The interferometer is used in the tied-array mode in the band from 856 to 1712 MHz, and the wide band coupled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project, which aims at to observing (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, and (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include the determination of pulsar geometries, the location of the radio emission within the pulsarmagnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself, as well as interstellar medium studies. First, results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time, and a description of interesting emission phenomena observed thus far.
More details from the publisher
More details
Details from ArXiV
More details

FPGA architecture to search for accelerated pulsars with SKA

Institute of Electrical and Electronics Engineers (IEEE) 00 (2020) 1-5

Authors:

P Thiagaraj, B Stappers, A Ghalame, L Levin, A Karastergiou, J Roy, M Mickaliger, M Keith
More details from the publisher

The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime

Publications of the Astronomical Society of Australia Cambridge University Press 37 (2020) e028

Authors:

M Bailes, A Jameson, F Abbate, Ed Barr, Ndr Bhat, L Bondonneau, M Burgay, Sj Buchner, F Camilo, Dj Champion, I Cognard, Pb Demorest, Pcc Freire, T Gautam, M Geyer, Jm Griessmeier, L Guillemot, H Hu, F Jankowski, S Johnston, A Karastergiou, R Karuppusamy, D Kaur, Mj Keith, M Kramer, J Van Leeuwen, Me Lower, Y Maan, Ma McLaughlin, Bw Meyers, S Osłowski, Ls Oswald, A Parthasarathy, T Pennucci, B Posselt, A Possenti, Sm Ransom, Dj Reardon, A Ridolfi, Ctg Schollar, M Serylak, G Shaifullah, M Shamohammadi, Rm Shannon, C Sobey, X Song, R Spiewak, Ih Stairs, Bw Stappers, W Van Straten

Abstract:

We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain low-system temperature radio array that currently operates at 580-1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar, pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR , and nulling identified in the slow pulsar PSR J0633-2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR exhibits a jitter limit of whilst timing of PSR over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750-3 500 MHz) receivers will further enhance its capabilities.
More details from the publisher
Details from ORA

Linking long- and short-term emission variability in pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:4 (2019) 5702-5712

Authors:

PR Brook, A Karastergiou, S Johnston
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet