Limits on absorption from a 332-MHz survey for fast radio bursts
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 493:3 (2020) 4418-4427
The Thousand-Pulsar-Array programme on MeerKAT - I. Science objectives and first results
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 493:3 (2020) 3608-3615
Abstract:
© 2020 The Author(s). We report here on initial results from the Thousand-Pulsar-Array (TPA) programme, part of the Large Survey Project 'MeerTime' on the MeerKAT telescope. The interferometer is used in the tied-array mode in the band from 856 to 1712 MHz, and the wide band coupled with the large collecting area and low receiver temperature make it an excellent telescope for the study of radio pulsars. The TPA is a 5 year project, which aims at to observing (a) more than 1000 pulsars to obtain high-fidelity pulse profiles, (b) some 500 of these pulsars over multiple epochs, and (c) long sequences of single-pulse trains from several hundred pulsars. The scientific outcomes from the programme will include the determination of pulsar geometries, the location of the radio emission within the pulsarmagnetosphere, the connection between the magnetosphere and the crust and core of the star, tighter constraints on the nature of the radio emission itself, as well as interstellar medium studies. First, results presented here include updated dispersion measures, 26 pulsars with Faraday rotation measures derived for the first time, and a description of interesting emission phenomena observed thus far.FPGA architecture to search for accelerated pulsars with SKA
Institute of Electrical and Electronics Engineers (IEEE) 00 (2020) 1-5
The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime
Publications of the Astronomical Society of Australia Cambridge University Press 37 (2020) e028
Abstract:
We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain low-system temperature radio array that currently operates at 580-1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar, pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR , and nulling identified in the slow pulsar PSR J0633-2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR exhibits a jitter limit of whilst timing of PSR over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750-3 500 MHz) receivers will further enhance its capabilities.Linking long- and short-term emission variability in pulsars
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:4 (2019) 5702-5712