Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
sky and dish

Aris Karastergiou

Professor of Astrophysics and Fellow at St Edmund Hall

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
Aris.Karastergiou@physics.ox.ac.uk
Telephone: 01865 (2)73642
Denys Wilkinson Building, room 603C
  • About
  • Publications

The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime

Publications of the Astronomical Society of Australia Cambridge University Press 37 (2020) e028

Authors:

M Bailes, A Jameson, F Abbate, Ed Barr, Ndr Bhat, L Bondonneau, M Burgay, Sj Buchner, F Camilo, Dj Champion, I Cognard, Pb Demorest, Pcc Freire, T Gautam, M Geyer, Jm Griessmeier, L Guillemot, H Hu, F Jankowski, S Johnston, A Karastergiou, R Karuppusamy, D Kaur, Mj Keith, M Kramer, J Van Leeuwen, Me Lower, Y Maan, Ma McLaughlin, Bw Meyers, S Osłowski, Ls Oswald, A Parthasarathy, T Pennucci, B Posselt, A Possenti, Sm Ransom, Dj Reardon, A Ridolfi, Ctg Schollar, M Serylak, G Shaifullah, M Shamohammadi, Rm Shannon, C Sobey, X Song, R Spiewak, Ih Stairs, Bw Stappers, W Van Straten

Abstract:

We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain low-system temperature radio array that currently operates at 580-1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar, pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR , and nulling identified in the slow pulsar PSR J0633-2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR exhibits a jitter limit of whilst timing of PSR over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750-3 500 MHz) receivers will further enhance its capabilities.
More details from the publisher
Details from ORA

Linking long- and short-term emission variability in pulsars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 488:4 (2019) 5702-5712

Authors:

PR Brook, A Karastergiou, S Johnston
More details from the publisher
Details from ArXiV

GREENBURST: A commensal Fast Radio Burst search back-end for the Green Bank Telescope

Publications of the Astronomical Society of Australia Cambridge University Press 36 (2019) e032

Authors:

MP Surnis, D Agarwal, Lorimer, X Pei, G Foster, A Karastergiou, G Golpayegani, RJ Maddalena, S White, Wesley Armour, J Cobb, MA McLaughlin, DHE Macmahon, APV Siemion, D Werthimer, CJ Williams

Abstract:

We describe the design and deployment of GREENBURST, a commensal Fast Radio Burst (FRB) search system at the Green Bank Telescope. GREENBURST uses the dedicated L-band receiver tap to search over the 960$-$1920 MHz frequency range for pulses with dispersion measures out to $10^4$ pc cm$^{-3}$. Due to its unique design, GREENBURST will obtain data even when the L-band receiver is not being used for scheduled observing. This makes it a sensitive single pixel detector capable of reaching deeper in the radio sky. While single pulses from Galactic pulsars and rotating radio transients will be detectable in our observations, and will form part of the database we archive, the primary goal is to detect and study FRBs. Based on recent determinations of the all-sky rate, we predict that the system will detect approximately one FRB for every 2$-$3 months of continuous operation. The high sensitivity of GREENBURST means that it will also be able to probe the slope of the FRB source function, which is currently uncertain in this observing band.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Understanding the radio beam of PSR J1136+1551 through its single pulses

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 310-324

Authors:

Lucy Oswald, A Karastergiou, S Johnston

Abstract:

The frequency widening of pulsar profiles is commonly attributed to lower frequencies being produced at greater heights above the surface of the pulsar; so-called radius-to-frequency mapping (RFM). The observer’s view of pulsar emission is a 1D cut through a 3D magnetosphere: we can only see that emission which points along our line of sight. However, by comparing the frequency evolution of many single pulses positioned at different phases, we can build up an understanding of the shape of the active emission region. We use single pulses observed with the Giant Metrewave Radio Telescope to investigate the emission region of PSR J1136+1551 and test RFM. Assuming that emission is produced tangential to the magnetic field lines and that each emission frequency corresponds to a single height, we simulate the single pulse profile evolution resulting from the canonical conal beam model and a fan beam model. Comparing the results of these simulations with the observations, we conclude that the emission region of PSR J1136+1551 is better described by the fan beam model. The diversity of profile widening behaviour observed for the single pulses can be explained by orthogonally polarized modes propagating along differing frequency-dependent paths in the magnetosphere.
More details from the publisher
Details from ORA
More details
Details from ArXiV

A fast radio burst with frequency-dependent polarization detected during Breakthrough Listen observations

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 486:3 (2019) 3636-3646

Authors:

DC Price, G Foster, M Geyer, W van Straten, V Gajjar, G Hellbourg, A Karastergiou, EF Keane, APV Siemion, I Arcavi, R Bhat, M Caleb, S-W Chang, S Croft, D DeBoer, I de Pater, J Drew, JE Enriquez, W Farah, N Gizani, JA Green, H Isaacson, J Hickish, A Jameson, M Lebofsky, DHE MacMahon, A Möller, CA Onken, E Petroff, D Werthimer, C Wolf, SP Worden, YG Zhang
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet