Unraveling the origin of magnetic fields in galaxies
Monthly Notices of the Royal Astronomical Society Oxford University Press 504:2 (2021) 2517–2534
Abstract:
Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out whether magnetic fields observed in galaxies were generated in the early Universe or are of astrophysical nature. Motivated by this, we use our magnetic tracer algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy down to z ∼ 2–1 in four scenarios: magnetized solely by primordial magnetic fields, magnetized exclusively by supernova (SN)-injected magnetic fields, and two combined primordial + SN magnetization cases. We find that once primordial magnetic fields with a comoving strength B0 > 10−12 G are considered, they remain the primary source of galaxy magnetization. Our magnetic tracers show that, even combined with galactic sources of magnetization, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic medium and intergalactic medium can be used to probe B0 without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.Dual effects of ram pressure on star formation in multiphase disk galaxies with strong stellar feedback
Astrophysical Journal IOP Science 905:1 (2020) 31
Abstract:
We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multiphase interstellar medium maintained by strong stellar feedback. We carry out radiation-hydrodynamic simulations of an isolated disk galaxy embedded in a 1011 M ⊙ dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure–stripped galaxies, depending on the strength of the winds. H i and H2 in the outer galactic disk are significantly stripped in the presence of moderate winds, whereas turbulent pressure provides support against ram pressure in the central region, where star formation is active. Moderate ICM winds facilitate gas collapse, increasing the total star formation rates by ~40% when the wind is oriented face-on or by ~80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing star formation by a factor of 2 within ~200 Myr. Dense gas clumps with n H gsim 10 M ⊙ pc−2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T = 106 K, only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.New methods for identifying Lyman continuum leakers and reionization-epoch analogues
Monthly Notices of the Royal Astronomical Society Oxford University Press 498:1 (2020) 164-180
Abstract:
Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S II]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S II Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C II]158 μm and [O III]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.How to quench a dwarf galaxy: The impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 2200-2220
Abstract:
We use the SPHINX suite of high-resolution cosmological radiation hydrodynamics simulations to study how spatially and temporally inhomogeneous reionization impacts the baryonic content of dwarf galaxies and cosmic filaments. We compare simulations with and without stellar radiation to isolate the effects of radiation feedback from that of supernova, cosmic expansion, and numerical resolution. We find that the gas content of cosmic filaments can be reduced by more than 80 per cent following reionization. The gas inflow rates into haloes with Mvir≲108M⊙ are strongly affected and are reduced by more than an order of magnitude compared to the simulation without reionization. A significant increase in gas outflow rates is found for halo masses Mvir≲7×107M⊙. Our simulations show that inflow suppression (i.e. starvation), rather than photoevaporation, is the dominant mechanism by which the baryonic content of high-redshift dwarf galaxies is regulated. At fixed redshift and halo mass, there is a large scatter in the halo baryon fractions that is entirely dictated by the timing of reionization in the local region surrounding a halo which can change by Δz ≳ 3 at fixed mass. Finally, although the gas content of high-redshift dwarf galaxies is significantly impacted by reionization, we find that most haloes with Mvir≲108M⊙ can remain self-shielded and form stars long after reionization, until their local gas reservoir is depleted, suggesting that Local Group dwarf galaxies do not necessarily exhibit star formation histories that peak prior to z = 6. Significantly larger simulation boxes will be required to capture the full process of reionization and understand how our results translate to environments not probed by our current work.Reionization history constraints from neural network based predictions of high-redshift quasar continua
Monthly Notices of the Royal Astronomical Society Oxford University Press 493:3 (2020) 4256-4275