Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Nikita Klimovich

PDRA in Superconducting Quantum Detectors

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Superconducting quantum detectors
nikita.klimovich@physics.ox.ac.uk
  • About
  • Publications

Development of Superconducting On-chip Fourier Transform Spectrometers.

Journal of low temperature physics (2022) 1-10

Authors:

Ritoban Basu Thakur, A Steiger, S Shu, F Faramarzi, N Klimovich, PK Day, E Shirokoff, PD Mauskopf, PS Barry

Abstract:

Superconducting On-chip Fourier Transform Spectrometers (SOFTS) are broadband, ultra-compact and electronic interferometers. SOFTS will enable kilo-pixel spectro-imaging focal planes, enhancing sub-millimeter astrophysics and cosmology. Particular applications include cluster astrophysics, cosmic microwave background (CMB) science, and line intensity mapping. This article details the development, design and bench-marking of radio frequency (RF) on-chip architecture of SOFTS for Ka and W-bands.
More details from the publisher
More details
More details

Optimizing sparse sampling for 2D electronic spectroscopy.

The Journal of chemical physics 146:8 (2017) 084201

Authors:

Sebastian Roeding, Nikita Klimovich, Tobias Brixner

Abstract:

We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.
More details from the publisher
More details
More details

Magnons and Phonons Optically Driven out of Local Equilibrium in a Magnetic Insulator.

Physical review letters 117:10 (2016) 107202

Authors:

Kyongmo An, Kevin S Olsson, Annie Weathers, Sean Sullivan, Xi Chen, Xiang Li, Luke G Marshall, Xin Ma, Nikita Klimovich, Jianshi Zhou, Li Shi, Xiaoqin Li

Abstract:

The coupling and possible nonequilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local nonequilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y_{3}Fe_{5}O_{12}, has been created optically within a focused laser spot and probed directly via micro-Brillouin light scattering. Through analyzing the deviation in the magnon number density from the local equilibrium value, we obtain the diffusion length of thermal magnons. By explicitly establishing and observing local nonequilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.
More details from the publisher
More details
More details

Investigating pin-holes issues in Josephson junction travelling wave parametric amplifiers requiring large area of dielectric layer

Authors:

Javier Navarro Montilla, Nikita Klimovich, Barbier Arnaud, Eduard FC Driessen, Boon Kok Tan

Abstract:

Microwave superconducting Josephson Travelling Wave Parametric Amplifiers (JTWPAs) exploit the non-linear inductance of a long superconducting metamaterial line formed by thousands of Josephson junctions to achieve broadband parametric gain with quantum limited added noise. Nevertheless, pin-holes in the dielectric (spacer) layer required for fabricating these superconducting transmission lines (STLs) represent a challenge for JTWPAs fabrication. In this paper, we explore two pin-holes mitigation techniques, which shown promising results with DC characterisation of a suite of test structures at cryogenic temperatures. When implemented for actual JTWPA designs with much longer length, they have shown to improve the fabrication yield albeit some pin-holes still seems to exist over the large wafer area. This indicates that further mitigation effort is required to completely eradicate the pin-holes issue for applications requiring large area of dielectric layer such as microwave JTWPAs.
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet