Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Manuel Kober-Czerny

Postdoctoral Research Assistant

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
manuel.kober-czerny@physics.ox.ac.uk
  • About
  • Publications

Excellent Long-Range Charge-Carrier Mobility in 2D Perovskites

Fundacio Scito (2022)

Authors:

Manuel Kober-Czerny, Silvia G Motti, Philippe Holzhey, Bernard Wenger, Laura M Herz, Jongchul Lim, Henry Snaith
More details from the publisher

Excellent long-range charge-carrier mobility in 2D perovskites

Advanced Functional Materials (2022)

Authors:

Manuel Kober-Czerny, Silvia Genaro Motti, Philippe Holzhey, Bernard Wenger, Jongchul Lim, Laura Maria Herz, Henry James Snaith
More details from the publisher
Details from ORA
More details

Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots.

Nature communications Springer Nature 13:1 (2022) 2587

Authors:

Gabriele Rainò, Nuri Yazdani, Simon C Boehme, Manuel Kober-Czerny, Chenglian Zhu, Franziska Krieg, Marta D Rossell, Rolf Erni, Vanessa Wood, Ivan Infante, Maksym V Kovalenko

Abstract:

Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr<sub>3</sub> quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs. initial values of 70-120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20-60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.
More details from the publisher
More details
More details

Robust excitons across the phase transition of two-dimensional hybrid perovskites

(2022)

Authors:

Jonas D Ziegler, Kai-Qiang Lin, Barbara Meisinger, Xiangzhou Zhu, Manuel Kober-Czerny, Pabitra K Nayak, Cecilia Vona, Takashi Taniguchi, Kenji Watanabe, Claudia Draxl, Henry J Snaith, John M Lupton, David A Egger, Alexey Chernikov
More details from the publisher

Excellent Long-Range Charge-Carrier Mobility in 2D Perovskites

University of Oxford (2022)

Authors:

Manuel Kober-Czerny, Silvia Genaro Motti, Philippe Holzhey, Bernard Wenger, Jongchul Lim, Laura Maria Herz, Henry J Snaith

Abstract:

The data was acquired as described in the 'Methods' section of the work. To analyse the data, python codes were run and are attached as well.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet