Commissioning run of the CRESST-II dark matter search
Astroparticle Physics 31:4 (2009) 270-276
Abstract:
The CRESST cryogenic direct dark matter search at Gran Sasso, searching for WIMPs via nuclear recoil, has been upgraded to CRESST-II by several changes and improvements. The upgrade includes a new detector support structure capable of accommodating 33 modules, the associated multichannel readout with 66 SQUID channels, a neutron shield, a calibration source lift, and the installation of a muon veto. We present the results of a commissioning run carried out in 2007. The basic element of CRESST-II is a detector module consisting of a large (∼ 300 g) CaWO4 crystal and a very sensitive smaller (∼ 2 g) light detector to detect the scintillation light from the CaWO4. The large crystal gives an accurate total energy measurement. The light detector permits a determination of the light yield for an event, allowing an effective separation of nuclear recoils from electron-photon backgrounds. Furthermore, information from light-quenching factor studies allows the definition of a region of the energy-light yield plane which corresponds to tungsten recoils. A neutron test is reported which supports the principle of using the light yield to identify the recoiling nucleus. Data obtained with two detector modules for a total exposure of 48 kg-days are presented. Judging by the rate of events in the "all nuclear recoils" acceptance region the apparatus shows a factor ∼10 improvement with respect to previous results, which we attribute principally to the presence of the neutron shield. In the "tungsten recoils" acceptance region three events are found, corresponding to a rate of 0.063 per kg-day. Standard assumptions on the dark matter flux, coherent or spin independent interactions, then yield a limit for WIMP-nucleon scattering of 4.8 × 10- 7 pb, at MWIMP ∼ 50 GeV. © 2009 Elsevier B.V. All rights reserved.Discrimination of Recoil Backgrounds in Scintillating Calorimeters
(2009)
ZnWO4 scintillators for cryogenic dark matter experiments
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600:3 (2009) 594-598
Abstract:
The scintillation properties of a zinc tungstate crystal, shaped as a hexagonal prism (height 40 mm, diagonal 40 mm) were determined. An energy resolution of 10.7% for the 662 keV γ-line of 137Cs was measured with the scintillator placed in a light collection setup similar to that used by the CRESST dark matter search. The light output and decay kinetics of ZnWO4 were examined over the temperature range 7-300 K and confirmed to be competitive with those of CaWO4. The radioactive contaminations of the ZnWO4 scintillator measured in the Solotvina Underground Laboratory do not exceed 0.1-10 mBq/kg (depending on radionuclide). Our study highlights the excellent feasibility of this ZnWO4 scintillator for a cryogenic dark matter experiment. © 2008 Elsevier B.V. All rights reserved.Efficient VUV sensitization of Eu3+ emission by Tb3+ in potassium rare-earth double phosphate
Physica Status Solidi - Rapid Research Letters 3:1 (2009) 13-15
Abstract:
The luminescence properties of K3Tb(PO4)2 activated by Eu3+ were studied at excitation over the 120-300 nm wavelength range. It is demonstrated that Tb3+ ions, exhibiting a strong absorption band in the vacuum-ultraviolet (VUV), can provide efficient sensitisation of Eu3+ emission in this wave length range, giving rise to intense red luminescence at 150 nm excitation. A proof is given for the concept of VUV sensitisation enabling the engineering of luminescence materials with enhanced conversion efficiency of VUV radiation into visible light. © 2009 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim.Eureca - The future of cryogenic dark matter detection in Europe
EAS Publications Series 36 (2009) 249-255