Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Hans Kraus

Professor of Physics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Particle Physics

Research groups

  • LUX-ZEPLIN
Hans.Kraus@physics.ox.ac.uk
Telephone: 01865 (2)73361
Denys Wilkinson Building, room 623
  • About
  • Publications

A new detector of nuclear radiation based on ballistic phonon propagation in single crystals at low temperatures

Physics Letters B Elsevier 202:1 (1988) 161-168

Authors:

Th Peterreins, F Pröbst, F Von Feilitzsch, RL Mössbauer, H Kraus
More details from the publisher

Calorimetric Detectors at Low Temperatures

Chapter in Low Temperature Detectors for Neutrinos and Dark Matter, Springer Nature (1987) 94-112

Authors:

F v. Feilitzsch, T Hertrich, H Kraus, L Oberauer, Th Peterreins, F Pröbst, W Seidel
More details from the publisher

High-Resolution X-Ray Detection with Superconducting Tunnel Junctions

EPL (Europhysics Letters) IOP Publishing 1:4 (1986) 161-166

Authors:

H Kraus, Th Peterreins, F Pröbst, FV Feilitzsch, RL Mössbauer, V Zacek, E Umlauf
More details from the publisher

Measuring the electric dipole moment of the neutron: The cryoEDM experiment

Proceedings of Science EPS-HEP 2009 376

Authors:

CA Baker, SN Balashov, V Francis, K Green, MGD van der Grinten, PS Iaydjiev, SN Ivanov, A Khazov, MAH Tucker, DL Wark, A Davidson, JR Grozier, M Hardiman, PG Harris, JR Karamath, K Katsika, JM Pendlebury, SJM Peeters, DB Shiers, PN Smith, CM Townsley, I Wardell, C Clarke, S Henry, H Kraus, M McCann, P Geltenbort, H Yoshiki

Abstract:

The cryoEDM experiment at the Institut Laue-Langevin in Grenoble will measure the electric dipole moment (EDM) of the neutron with unparalleled precision. A neutron EDM arises due to CP violation. The cryoEDM experiment is sensitive to levels of CP violation predicted by many “beyond the standard model” theories and the result will therefore constrain or support these theories. The current limit to the neutron EDM stands at d_n<2.9x 10^-26 e cm as measured with a room temperature experiment. By operating in superfluid helium below 0.9 K and collecting high densities of ultra cold neutrons, the cryoEDM experiment will improve on the existing limit or measure an EDM. High precision magnetometry is essential to reduce the systematic errors in the cryoEDM experiment originating from changes in the magnetic environment. We present the cryoEDM apparatus and technologies.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Current page 75

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet