Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Jamie Leech

Senior Researcher

Sub department

  • Astrophysics

Research groups

  • The Square Kilometre Array (SKA)
  • Experimental radio cosmology
  • C-BASS
jamie.leech@physics.ox.ac.uk
Telephone: 01865 (2)73299
Denys Wilkinson Building, room 764
  • About
  • Publications

The JCMT Nearby Galaxies Legacy Survey - IV. Velocity dispersions in the molecular interstellar medium in spiral galaxies

Monthly Notices of the Royal Astronomical Society 410:3 (2011) 1409-1422

Authors:

CD Wilson, BE Warren, J Irwin, JH Knapen, FP Israel, S Serjeant, D Attewell, GJ Bendo, E Brinks, HM Butner, DL Clements, J Leech, HE Matthews, S Mühle, AMJ Mortier, TJ Parkin, G Petitpas, BK Tan, RPJ Tilanus, A Usero, M Vaccari, P van der Werf, T Wiegert, M Zhu

Abstract:

An analysis of large-area CO J = 3-2 maps from the James Clerk Maxwell Telescope for 12 nearby spiral galaxies reveals low velocity dispersions in the molecular component of the interstellar medium. The three lowest luminosity galaxies show a relatively flat velocity dispersion as a function of radius while the remaining nine galaxies show a central peak with a radial fall-off within 0.2-0.4r25. Correcting for the average contribution due to the internal velocity dispersions of a population of giant molecular clouds, the average cloud-cloud velocity dispersion across the galactic discs is 6.1 ± 1.0 kms-1 (standard deviation of 2.9 kms-1), in reasonable agreement with previous measurements for the Galaxy and M33. The cloud-cloud velocity dispersion derived from the CO data is on average two times smaller than the HI velocity dispersion measured in the same galaxies. The low cloud-cloud velocity dispersion implies that the molecular gas is the critical component determining the stability of the galactic disc against gravitational collapse, especially in those regions of the disc which are H2 dominated. The cloud-cloud velocity dispersion shows a significant positivecorrelation with both the far-infrared luminosity, which traces the star formation activity, and the K-band absolute magnitude, which traces the total stellar mass. For three galaxies in the Virgo cluster, smoothing the data to a resolution of 4.5 kpc (to match the typical resolution of high-redshift CO observations) increases the measured velocity dispersion by roughly a factor of 2, comparable to the dispersion measured recently in a normal galaxy at z = 1. This comparison suggests that the mass and star formation rate surface densities may be similar in galaxies from z = 0 to 1 and that the high star formation rates seen at z = 1 may be partly due to the presence of physically larger molecular gas discs. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

The experimental demonstration of a low-cost 37-horn focal-plane array consisting of smooth-walled multiple flare-angle horns fabricated by direct drilling

22nd International Symposium on Space Terahertz Technology 2011, ISSTT 2011 (2011) 139-142

Authors:

J Leech, BK Tan, G Yassin, P Kittara, S Wangsuya

Abstract:

In previous work, we have described novel smoothwalled multiple flare-angle horns designed using a genetic algorithm. A key feature of these horns is that they can be manufactured very rapidly and cheaply in large numbers, by repeated direct drilling into a single plate of aluminium using a shaped machine tool. The rapid manufacturing technique will enable the construction of very low cost focal-plane arrays, offering an alternative to conventional electroformed corrugated horn arrays. In order to experimentally demonstrate the new technology, we constructed a 230 GHz focal-plane array comprising 37 smooth-walled horns fabricated by direct drilling. We present the measured beam patterns for a large sample of these horns across the array, demonstrating the suitability of our manufacturing techniques for large format arrays. We have measured the cross coupling between adjacent feeds and have shown that it is negligible. We also present high quality beam patterns measured for a much smaller 700 GHz horn, showing the promise of extending this technology to THz frequencies.

A 650 GHz Unilateral Finline SIS Mixer Fed by a Multiple Flare-Angle Smooth-Walled Horn

IEEE Transactions on Terahertz Science and Technology (2011)

Authors:

B-K Tan, G Yassin, P Grimes, J Leech, K Jacobs, C Groppi
More details from the publisher
More details

A High Performance 700 GHz Feed Horn

Journal of Infrared, Millimeter, and Terahertz Waves (2011) 1-5

Authors:

B-K Tan, J Leech, G Yassin, P Kittara, M Tacon, S Wangsuya, C Groppi
More details from the publisher
More details

Experimental Investigation of a Low-Cost, High Performance Focal-Plane Horn Array

IEEE Transactions on Terahertz Science and Technology (2011)

Authors:

J Leech, BK Tan, G Yassin, P Kittara, S Wangsuya
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet