Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Jamie Leech

Senior Researcher

Sub department

  • Astrophysics

Research groups

  • The Square Kilometre Array (SKA)
  • Experimental radio cosmology
  • C-BASS
jamie.leech@physics.ox.ac.uk
Telephone: 01865 (2)73299
Denys Wilkinson Building, room 764
  • About
  • Publications

The Cosmic Background Imager 2

Monthly Notices of the Royal Astronomical Society (2011)

Authors:

AC Taylor, ME Jones, JR Allison, E Angelakis, JR Bond, L Bronfman, R Bustos, RJ Davis, C Dickinson, J Leech, BS Mason, ST Myers, TJ Pearson, ACS Readhead, R Reeves, MC Shepherd, JL Sievers
Details from ArXiV
More details from the publisher

An sis unilateral finline mixer with an ultra-wide if bandwidth

21st International Symposium on Space Terahertz Technology 2010, ISSTT 2010 (2010) 179-183

Authors:

Y Zhou, J Leech, P Grimes, G Yassin

Abstract:

In this paper, we will present the design and the simulation of a 230GHz finline Ultra-wide IF Bandwidth SIS mixer. This mixer will be used in a novel millimeter-wave heterodyne interferometer: GUBBINS. GUBBINS is designed to demonstrate high surface brightness mm-wave interferometry at modest spatial and spectrum resolution. Its observational targets are the spectrum of the Sunyaev-Zel'dovich effect in the brightness galaxy cluster[3]. The archetype of the mixer design described here is an antipodal finline SIS mixer designed by Paul Grimes in Oxford Experimental Cosmology group in 2008[1]. Here several improvement and modification are made to simplify the design and fabrication, and also enhance the IF bandwidth. An unilateral finline replaces the complicated antipodal finline. No RF bandpass filter is needed after finline. The tuning circuit design presented here aims to achieve wider RF coupling bandwidth, even though only a single junction is used. A multi-stage IF transformer follows the IF bonding pad matching the IF output of the mixer to the input of the IF amplifier, as well as reducing the impact of the parasitical capacitance introduced by the RF finline and RF radial stub.

Measured performance of a 230 GHz prototype focal-plane feedhorn array made by direct drilling of smooth-walled horns

21st International Symposium on Space Terahertz Technology 2010, ISSTT 2010 (2010) 91-96

Authors:

J Leech, BK Tan, G Yassin, P Kittara, A Jiralucksanawong, S Wangsuya

Abstract:

We present the first, complete 230 GHz feedhorn array manufactured by direct drilling of smooth-walled horns into a single plate of aluminium. The horn design process, based on a genetic algorithm, is described and the fabrication process, via direct drilling using shaped drill bits, is presented. We present cross coupling and beam pattern measurements of a close-packed pair of the smooth-walled horns fabricated in a single block of aluminium. We also present a prototype 37 horn array, again fabricated by drilling into a single block. Our measurements show that our designs and fabrication techniques will be robust when applied to large focal arrays of horns consisting of hundreds or thousands of feedhorns. We expect our smooth-walled horn designs and novel manufacturing techniques will offer an attractive, low-cost alternate to traditional horn arrays consisting of electroformed corrugated horns.

A 700 GHz unilateral finline SIS mixer fed by a multi-flare angle smooth-walled horn

Proceedings of SPIE - The International Society for Optical Engineering 7741 (2010)

Authors:

BK Tan, G Yassin, P Grimes, J Leech, K Jacobs, S Withington, M Tacon, C Groppi

Abstract:

We present the design of a broadband superconductor-insulator- superconductor (SIS) mixer operating near 700 GHz. A key feature of our design is the utilisation of a new type of waveguide to planar circuit transition comprising a unilateral finline taper. This transition is markedly easier to design, simulate and fabricate than the antipodal finline we employed previously. The finline taper and the superconducting circuitry are deposited on a 15 μm thick silicon substrate. The employment of the very thin substrate, achieved using Silicon-On-Insulator (SOI) technology, makes it easy to match the incoming signal to the loaded waveguide. The lightweight mixer chip is held in the E-plane of the waveguide using gold beam leads, avoiding the need for deep grooves in the waveguide wall. This new design yields a significantly shorter chip, free of serrations and a wider RF bandwidth. Since tuning and all other circuits are integrated on the mixer chip, the mixer block is extremely simple, comprising a feed horn and a waveguide section without any complicated mechanical features. We employ a new type of smooth-walled horn which exhibits excellent beam circularity and low cross polarisation, comparable to the conventional corrugated horn, and yet is easier to fabricate. The horn is machined by standard milling with a drill tool shaped into the horn profile. In this paper, we describe the detailed design of the mixer chip including electromagnetic simulations, and the mixer performance obtained with SuperMix simulations. We also present the preliminary measurements of the smooth-walled horn radiation patterns near the mixer operating frequencies. © 2010 SPIE.
More details from the publisher
More details

A CO(3-2) survey of a merging sequence of luminous infrared galaxies

Monthly Notices of the Royal Astronomical Society 406:2 (2010) 1364-1378

Authors:

J Leech, KG Isaak, PP Papadopoulos, Y Gao, GR Davis

Abstract:

Luminous infrared galaxies (LIR > 1011 L⊙) are often associated with interacting galactic systems and are thought to be powered by merger-induced starbursts and/or dust-enshrouded active galactic nucleus. In such systems, the evolution of the dense, star-forming molecular gas as a function of merger separation is of particular interest. Here, we present observations of the CO(3-2) emission from a sample of luminous infrared galaxy mergers that span a range of galaxy-galaxy separations. The excitation of the molecular gas is studied by examining the CO(3-2)/CO(1-0) line ratio, r31, as a function of merger extent. We find these line ratios, r31, to be consistent with kinetic temperatures of Tk = (30-50) K and gas densities of We also find weak correlations between r31 and both merger progression and star formation efficiency [LFIR/LCO(1-0)]. These correlations show a tendency for gas excitation to increase as the merger progresses and the star formation efficiency rises. To conclude, we calculate the contributions of the CO(3-2) line to the 850-μm fluxes measured with SCUBA (Submillimetre Common-User Bolometer Array), which are seen to be significant (∼22 per cent). © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet