Emulating two qubits with a four-level transmon qudit for variational quantum algorithms
Quantum Science and Technology IOP Publishing 9:3 (2024) 035003
Abstract:
Using quantum systems with more than two levels, or qudits, can scale the computational space of quantum processors more efficiently than using qubits, which may offer an easier physical implementation for larger Hilbert spaces. However, individual qudits may exhibit larger noise, and algorithms designed for qubits require to be recompiled to qudit algorithms for execution. In this work, we implemented a two-qubit emulator using a 4-level superconducting transmon qudit for variational quantum algorithm applications and analyzed its noise model. The major source of error for the variational algorithm was readout misclassification error and amplitude damping. To improve the accuracy of the results, we applied error-mitigation techniques to reduce the effects of the misclassification and qudit decay event. The final predicted energy value is within the range of chemical accuracy.Superconducting qubit readout enhanced by path signature
(2024)
Encoding optimization for quantum machine learning demonstrated on a superconducting transmon qutrit
(2023)
Searching for wave-like dark matter with QSHS
SciPost Physics Proceedings SciPost 12 (2023)
Abstract:
In 2021 the Quantum Sensors for the Hidden Sector (QSHS) collaboration was founded in the UK and received funding to develop and demonstrate quantum devices with the potential to detect hidden sector particles in the μeV to 100 μeV mass window. The collaboration has been developing a range of devices. It is building a high-field, low-temperature facility at the University of Sheffield to characterise and test the devices in a haloscope geometry. This paper introduces the collaboration's motivation, aims, and progress.Emulating two qubits with a four-level transmon qudit for variational quantum algorithms
(2023)