Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Leek

Research Fellow

Sub department

  • Condensed Matter Physics

Research groups

  • Superconducting quantum devices
peter.leek@physics.ox.ac.uk
Telephone: 01865 (2)72364,01865 (2)82066
Clarendon Laboratory, room 018,104
  • About
  • Publications

Rescaling Interactions for Quantum Control

PHYSICAL REVIEW APPLIED 13:3 (2020) 34002

Authors:

Gaurav Bhole, Takahiro Tsunoda, Peter J Leek, Jonathan A Jones

Abstract:

© 2020 American Physical Society. A powerful control method in experimental quantum computing is the use of spin echoes, employed to select a desired term in the system's internal Hamiltonian, while refocusing others. Here, we address a more general problem, describing a method to not only turn on and off particular interactions but also to rescale their strengths so that we can generate any desired effective internal Hamiltonian. We propose an algorithm based on linear programming for achieving time-optimal rescaling solutions in fully coupled systems of tens of qubits, which can be modified to obtain near-time-optimal solutions for rescaling systems with hundreds of qubits.
More details from the publisher
More details
Details from ArXiV

Rescaling interactions for quantum control

Physical Review Applied American Physical Society 13:3 (2020) 034002

Authors:

Gaurav Bhole, Takahiro Tsunoda, Peter Leek, Jonathan Jones

Abstract:

A powerful control method in experimental quantum computing is the use of spin echoes, employed to select a desired term in the system’s internal Hamiltonian, while refocusing others. Here, we address a more general problem, describing a method to not only turn on and off particular interactions but also to rescale their strengths so that we can generate any desired effective internal Hamiltonian. We propose an algorithm based on linear programming for achieving time-optimal rescaling solutions in fully coupled systems of tens of qubits, which can be modified to obtain near-time-optimal solutions for rescaling systems with hundreds of qubits.
More details from the publisher
Details from ORA

Rescaling interactions for quantum control

(2019)

Authors:

Gaurav Bhole, Takahiro Tsunoda, Peter J Leek, Jonathan A Jones
More details from the publisher

Cost function embedding and dataset encoding for machine learning with parameterized quantum circuits

(2019)

Authors:

Shuxiang Cao, Leonard Wossnig, Brian Vlastakis, Peter Leek, Edward Grant
More details from the publisher

Modelling Enclosures for Large-Scale Superconducting Quantum Circuits

(2019)

Authors:

PA Spring, T Tsunoda, B Vlastakis, PJ Leek
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet