Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Ian Lewis

Instrument Scientist

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
ian.lewis@physics.ox.ac.uk
Telephone: 01865 (2)73340
Denys Wilkinson Building, room 361C
  • About
  • Publications

FMOS: The fiber multiple-object spectrograph IV: Current status of OHS-based spectrograph

Proceedings of SPIE - The International Society for Optical Engineering 6269 I (2006)

Authors:

F Iwamuro, T Maihara, K Ohta, S Eto, M Sakai, M Akiyama, M Kimura, N Tamura, J Noumaru, H Karoji, GB Dolton, IJ Lewis, IAJ Tosh, GJ Murray, NA Dipper, DJ Robertoson, PR Gillingham, S Smedley, GA Smith, G Frost

Abstract:

The Fiber Multiple-Object Spectrograph for Subaru Telescope (FMOS) is quite large instrument composed of the prime focus unit, the fiber bundle unit, and the two infrared spectrographs. Among these units, a part of the prime focus unit and one of the spectrograph were transported from Kyoto University to the Subaru observatory in the middle of 2005. We present the optical and the mechanical components of the spectrograph, which was reassembled on the new floor of the Subaru dome. We also show the preliminary results of the optical alignment and the cooling test of the instrument at the summit of Mauna Kea.
More details from the publisher

Opto-mechanical design of the KMOS spectrograph module

Proceedings of SPIE - The International Society for Optical Engineering 6269 III (2006)

Authors:

M Tecza, IJ Lewis, J Lynn, S Yang, NA Thatte, IAJ Tosh, MJ Ferlet

Abstract:

We present the optical and mechanical design of the KMOS spectrograph module together with a detailed analysis of its performance. KMOS is a cryogenic near-infrared multi-object spectrograph being developed as a second-generation instrument for the VLT by a consortium of UK and German institutes. Three identical spectrograph modules provide Nyquist sampled spectra in the wavelength range covering the atmospheric bands z, J, H, and K with a resolving power exceeding 3200. The spectrographs are fully achromatic over the bands and the single mirror collimator and six-element camera, together with six high efficiency gratings provide high throughput. The optical performance analysis includes amongst others the spectral resolving power and variation of the PSF as a function of the pupil illumination.
More details from the publisher
More details

The UK FMOS spectrograph

Proceedings of SPIE - The International Society for Optical Engineering 6269 II (2006)

Authors:

GB Dalton, IJ Lewis, DG Bonfield, AR Holmes, CB Brooks, H Lee, IAJ Tosh, TR Froud, M Patel, NA Dipper, C Blackburn

Abstract:

We describe the build phase of the UK FMOS spectrograph, a 200 fibre cooled OH Suppression infrared spectrograph being constructed as part of Subaru's Fibre Multi Object Spectroscopy facility. Here we describe recent UK activities within the FMOS programme and the likely schedule for commissioning at Subaru.
More details from the publisher

KMOS: A multi-object deployable-IFU spectrometer for the ESO VLT

NEW ASTRON REV 50:4-5 (2006) 370-373

Authors:

R Sharples, R Bender, R Bennett, K Burch, P Carter, P Clark, R Content, R Davies, R Davies, M Dubbeldam, R Genzel, A Hess, K Laidlaw, M Lehnert, I Lewis, B Muschielok, S Ramsey-Howat, P Rees, D Robertson, I Robson, R Saglia, M Tecza, N Thatte, S Todd, B Wall, M Wegner

Abstract:

We describe the design of a 2nd generation instrument for the ESO VLT which uses 24 cryogenic pickoff arms linked to diamond-machined image slicing integral field units to deliver a unique multiple deployable integral field capability in the near-infrared (1-2.5 mu m). The science requirements for the instrument are presented and linked to the functional specification. The baseline instrument concept is described with emphasis on technological innovations. (c) 2006 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Measuring the star formation rate of the universe at z ∼ 1 from Hα with multi-object near-infrared spectroscopy

Proceedings of the International Astronomical Union 2:S235 (2006) 394

Authors:

A Bunker, M Doherty, R Sharp, I Parry, G Dalton, I Lewis

Abstract:

We have demonstrated the first near-infrared multi-object spectrograph, CIRPASS, on the 4.2-m William Herschel Telescope (WHT) and the 3.9-m Anglo-Australian Telescope. We have conducted an H survey of 38 0.77 < z < 1 galaxies over ∼100 arcmin2 of the Hubble Deep Field North and Flanking Fields, to determine star formation rates (SFRs) using CIRPASS on the WHT. This represents the first successful application of this technique to observing high redshift galaxies (Doherty et al. 2004). Stacking the spectra in the rest-frame, we find a lower limit (uncorrected for dust reddening) on the star formation rate density at redshift z = 1 of 0.04 M yr1 Mpc 3 (Doherty et al. 2006). This implies rapid evolution in the star formation rate density from z = 0 to z = 1 which is proportional to (1 + z) 3.1. We intend to extend our work with FMOS on Subaru as the evolSMURF project (the Evolution of Star-formation and Metallicity in the Universe at high Redshift with FMOS). This will represent nearly two orders-of-magnitude improvement on previous work, and for the first time will provide a sample of sufficient size to measure accurately the H luminosity function, and so determine the global star formation rate using the same indicator as used in local surveys. Using [O II]3727 , H, [O III] 5007 and H redshifted into the z, J & H bands, we can chart the star formation history over 70% of the age of the Universe, affording complete coverage up to z = 1.6 with the same well-understood diagnostics. The line ratios will also allow the extinction and metallicity to be measured at z>1. This will resolve one of the long-standing puzzles in extragalactic astrophysics the true evolution of the Madau-Lilly diagram of star formation density. © 2007 International Astronomical Union.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet