Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Ian Lewis

Instrument Scientist

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Extremely Large Telescope
ian.lewis@physics.ox.ac.uk
Telephone: 01865 (2)73340
Denys Wilkinson Building, room 361C
  • About
  • Publications

KMOS: Assembly, integration and testing of three 0.8-2.5 micron spectrographs

GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY III 7735 (2010) ARTN 773551

Authors:

Richard J Masters, Ian J Lewis, Ian AJ Tosh, Matthias Tecza, James Lynn, Robert EJ Watkins, Andrew Clack, Roger L Davies, Niranjan A Thatte, Mike Tacon, Rick Makin, Jon Temple, Alan Pearce
More details from the publisher

FMOS: The fiber multiple-object spectrograph VI: On board performances and results of the engineering observations

Proceedings of SPIE - The International Society for Optical Engineering 7014 (2008)

Authors:

F Iwamuro, T Maihara, M Akiyama, M Kimura, N Tamura, N Takato, K Ohta, S Eto, Y Moritani, GB Dalton, IJ Lewis, H Lee, IAJ Tosh, TR Froud, GJ Murray, C Blackburn, DG Bonfield, PR Gillingham, S Smedley, GA Smith, G Frost

Abstract:

FMOS: the Fiber Multiple-Object Spectrograph is the next common-use instrument of the Subaru Telescope, having a capability of 400 targets multiplicity in the near-infrared 0.9-1.8μm wavelength range with a field coverage of 30- diameter. FMOS consists of three units: 1) the prime focus unit including the corrector lenses, the Echidna fiber positioner, and the instrument-bay to adjust the instrument focus and shift the axis of the corrector lens system, 2) the fiber bundle unit equipping two fiber slits on one end and a fiber connector box with the back-illumination mechanism on the other end on the bundle, 3) the two infrared spectrographs (IRS1 and IRS2) to obtain 2×200 spectra simultaneously. After all the components were installed in the telescope at the end of 2007, the total performance was checked through various tests and engineering observations. We report the results of these tests and demonstrate the performance of FMOS.
More details from the publisher
More details

Integration, commissioning and performance of the UK FMOS spectrograph

Proceedings of SPIE - The International Society for Optical Engineering 7014 (2008)

Authors:

GB Dalton, IJ Lewis, IAJ Tosh, C Blackburn, DG Bonfield, Charles, B Brooks, AR Holmes, H Lee, TR Froud, M Akiyama, N Tamura, N Takato

Abstract:

The UK FMOS spectrograph forms part of Subaru's FMOS multi-object infrared spectroscopy facility. The spectrograph was shipped to Hilo in component form in August of 2007. We describe the integration sequence for the spectrograph, the results of cooldown tests using a new chiller unit fitted to the spectrograph at the telescope, and alignment tests of the spectrograph, gratings and OH-suppression masks. We present the first-light observations for the spectrograph from May 2008.
More details from the publisher
More details

Management of optical interfaces in the VLT KMOS instrument

Proceedings of SPIE - The International Society for Optical Engineering 7017 (2008)

Authors:

P Rees, R Content, M Dubbeldam, I Lewis, S Rolt, S Todd, I Tosh

Abstract:

The heart of the KMOS instrument is a complex optical system with over 300 separate optical paths. The optical design is spread between 4 sub-systems which have been designed at three different institutions. In order that the end to end performance of the final design can be monitored and controlled it is necessary to specify the performance and interface requirements of each sub-system clearly. This paper describes the parameters that were necessary to control so that the sub-system designs could be carried out independently while maintaining visibility and control of the end to end performance. The method of apportioning the budgets between the sub-systems and the modeling performed to verify compliance is also described.
More details from the publisher
More details

Design of the KMOS multi-object integral field spectrograph

Proceedings of SPIE - The International Society for Optical Engineering 6269 I (2006)

Authors:

R Sharples, R Bender, R Bennett, K Burch, P Carter, M Casali, P Clark, R Content, R Davies, R Davies, M Dubbeldam, G Finger, R Genzel, R Haefner, A Hess, M Kissler-Patig, K Laidlaw, M Lehnert, I Lewis, A Moorwood, B Muschielok, NF Schreiber, J Pirard, SR Howat, P Rees, J Richter, D Robertson, I Robson, R Saglia, M Tecza, N Thatte, S Todd, M Wegner

Abstract:

KMOS is a near-infrared multi-object integral field spectrometer which has been selected as one of a suite of second-generation instruments to be constructed for the ESO VLT in Chile. The instrument will be built by a consortium of UK and German institutes working in partnership with ESO and is currently at the end of its preliminary design phase. We present the design status of KMOS and discuss the most novel technical aspects and the compliance with the technical specification.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet