Secularly powered outflows from AGN: the dominance of non-merger driven supermassive black hole growth
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)
Abstract:
The Frequency of Dust Lanes in Edge-on Spiral Galaxies Identified by Galaxy Zoo in KiDS Imaging of GAMA Targets
ASTRONOMICAL JOURNAL 158:3 (2019) ARTN 103
Abstract:
© 2019. The American Astronomical Society. All rights reserved.. Dust lanes bisect the plane of a typical edge-on spiral galaxy as a dark optical absorption feature. Their appearance is linked to the gravitational stability of spiral disks; the fraction of edge-on galaxies that displays a dust lane is a direct indicator of the typical vertical balance between gravity and turbulence: a balance struck between the energy input from star formation and the gravitational pull into the plane of the disk. Based on morphological classifications by the Galaxy Zoo project on the Kilo Degree Survey (KiDS) imaging data in the Galaxy and Mass Assembly (GAMA) fields, we explore the relation of dust lanes to the galaxy characteristics, most of which were determined using the Magphys spectral energy distribution fitting tool: stellar mass, total and specific star formation rates, and several parameters describing the cold dust component. We find that the fraction of dust lanes does depend on the stellar mass of the galaxy; they start to appear at M∗ ∼109 M o. A dust lane also strongly implies a dust mass of at least 105 M o, but otherwise does not correlate with cold dust mass parameters of the Magphys spectral energy distribution analysis, nor is there a link with the star formation rate, specific or total. Dust lane identification does not depend on disk ellipticity (disk thickness) or Sérsic profile but correlates with bulge morphology; a round bulge favors dust lane votes. The central component along the line of sight that produces the dust lane is not associated with either one of the components fit by Magphys, the cold diffuse component or the localized, heated component in H ii regions, but a mix of these two.The effect of minor and major mergers on the evolution of low-excitation radio galaxies
Astrophysical Journal American Astronomical Society 878:2 (2019) 88
Abstract:
We use deep, μ r ≲ 28 mag arcsec−2, r-band imaging from the Dark Energy Camera Legacy Survey to search for past, or ongoing, merger activity in a sample of 282 low-excitation radio galaxies (LERGs) at z < 0.07. Our principal aim is to assess the the role of mergers in the evolution of LERGs. Exploiting the imaging depth, we classify tidal remnants around galaxies as both minor and major morphological disturbances for our LERG sample and 1622 control galaxies matched in redshift, stellar mass, and environment. In groups and in the field, the LERG minor merger fraction is consistent with the control population. In galaxy clusters, 8.8 ± 2.9% of LERGs show evidence of recent minor mergers in contrast to 23.0 ± 2.0% of controls. This ~4σ deficit of minor mergers in cluster LERGs suggests these events may inhibit this type of nuclear activity for galaxies within the cluster environment. We observe a >4σ excess of major mergers in the LERGs with M * ≲ 1011 M⊙, with 10 ± 1.5% of these active galactic nuclei involved in such large-scale interactions compared to 3.2 ± 0.4% of control galaxies. This excess of major mergers in LERGs decreases with increasing stellar mass, vanishing by M * > 1011.3 M⊙. These observations show that minor mergers do not fuel LERGs, and are consistent with typical LERGs being powered by accretion of matter from their halo. Where LERGs are associated with major mergers, these objects may evolve into more efficiently accreting active galactic nuclei as the merger progresses and more gas falls on to the central engine.Galaxy Zoo: unwinding the winding problem – observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding
Monthly Notices of the Royal Astronomical Society Oxford University Press 487:2 (2019) 1808-1820
Abstract:
We use classifications provided by citizen scientists though Galaxy Zoo to investigate the correlation between bulge size and arm winding in spiral galaxies. Whilst the traditional spiral sequence is based on a combination of both measures, and is supposed to favour arm winding where disagreement exists, we demonstrate that, in modern usage, the spiral classifications Sa–Sd are predominantly based on bulge size, with no reference to spiral arms. Furthermore, in a volume limited sample of galaxies with both automated and visual measures of bulge prominence and spiral arm tightness, there is at best a weak correlation between the two. Galaxies with small bulges have a wide range of arm winding, while those with larger bulges favour tighter arms. This observation, interpreted as revealing a variable winding speed as a function of bulge size, may be providing evidence that the majority of spiral arms are not static density waves, but rather wind-up over time. This suggests the ‘winding problem’ could be solved by the constant reforming of spiral arms, rather than needing a static density wave. We further observe that galaxies exhibiting strong bars tend to have more loosely wound arms at a given bulge size than unbarred spirals. This observations suggests that the presence of a bar may slow the winding speed of spirals, and may also drive other processes (such as density waves) that generate spiral arms. It is remarkable that after over 170 years of observations of spiral arms in galaxies our understanding of them remains incomplete.Getting Connected: An Empirical Investigation of the Relationship Between Social Capital and Philanthropy Among Online Volunteers
Nonprofit and Voluntary Sector Quarterly SAGE Publications 48:2_suppl (2019) 151s-173s