Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Chris Lintott

Professor of Astrophysics and Citizen Science Lead

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
chris.lintott@physics.ox.ac.uk
Telephone: 01865 (2)73638
Denys Wilkinson Building, room 532C
www.zooniverse.org
orcid.org/0000-0001-5578-359X
  • About
  • Citizen science
  • Group alumni
  • Publications

Zooniverse labs

Zooniverse lab
Build your own Zooniverse project

The Zooniverse lab lets anyone build their own citizen science project

Zooniverse Lab

Editorial: A Cooperative Agreement with the Journal of Open Source Software

The Astrophysical Journal American Astronomical Society 869:2 (2018) 156

Authors:

Ethan T Vishniac, Christopher Lintott
More details from the publisher
More details

AGN photoionization of gas in companion galaxies as a probe of AGN radiation in time and direction

Monthly Notices of the Royal Astronomical Society Oxford University Press 483:4 (2018) 4847-4865

Authors:

WC Keel, VN Bennert, A Pancoast, CE Harris, A Nierenberg, SD Chojnowaki, Christopher Lintott, K Schawinski, G Mitchell, C Cornen

Abstract:

We consider active galactic nucleus (AGN) photoionization of gas in companion galaxies (cross-ionization) as a way to sample the intensity of AGN radiation in both direction and time, independent of the gas properties of the AGN host galaxies. From an initial set of 212 AGN+companion systems, identified with the help of Galaxy Zoo participants, we obtained long-slit optical spectra of 32 pairs that were a priori likely to show cross-ionization based on projected separation or angular extent of the companion. From emission-line ratios, 10 of these systems are candidates for cross-ionization, roughly the fraction expected if most AGNs have ionization cones with 70° opening angles. Among these, Was 49 remains the strongest nearby candidate. NGC 5278/9 and UGC 6081 are dual-AGN systems with tidal debris, complicating identification of cross-ionization. The two weak AGNs in the NGC 5278/9 system ionize gas filaments to a projected radius 14 kpc from each galaxy. In UGC 6081, an irregular high-ionization emission region encompasses both AGNs, extending more than 15 kpc from each. The observed AGN companion galaxies with and without signs of external AGN photoionization have similar distributions in estimated incident AGN flux, suggesting that geometry of escaping radiation or long-term variability controls this facet of the AGN environment. This parallels conclusions for luminous QSOs based on the proximity effect among Lyman α absorbers. In some galaxies, mismatch between spectroscopic classifications in the common BPT diagram and the intensity of weaker He II and [Ne V] emission lines highlights the limits of common classifications in low-metallicity environments.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Editorial: Living Articles

The Astrophysical Journal American Astronomical Society 868:2 (2018) 78

Authors:

Ethan T Vishniac, Chris Lintott
More details from the publisher
More details

Doing Good Online: The Changing Relationships Between Motivations, Activity, and Retention Among Online Volunteers

Nonprofit and Voluntary Sector Quarterly SAGE Publications 47:5 (2018) 1031-1056

Authors:

Joe Cox, Eun Young Oh, Brooke Simmons, Gary Graham, Anita Greenhill, Chris Lintott, Karen Masters, Jamie Woodcock
More details from the publisher
More details

Time-lapse imagery and volunteer classifications from the Zooniverse Penguin Watch project.

Scientific data (2018)

Authors:

FM Jones, C Allen, C Arteta, J Arthur, C Black, LM Emmerson, R Freeman, G Hines, CJ Lintott, Z Macháčková, G Miller, R Simpson, C Southwell, HR Torsey, A Zisserman, Tom Hart

Abstract:

Automated time-lapse cameras can facilitate reliable and consistent monitoring of wild animal populations. In this report, data from 73,802 images taken by 15 different Penguin Watch cameras are presented, capturing the dynamics of penguin (Spheniscidae; Pygoscelis spp.) breeding colonies across the Antarctic Peninsula, South Shetland Islands and South Georgia (03/2012 to 01/2014). Citizen science provides a means by which large and otherwise intractable photographic data sets can be processed, and here we describe the methodology associated with the Zooniverse project Penguin Watch, and provide validation of the method. We present anonymised volunteer classifications for the 73,802 images, alongside the associated metadata (including date/time and temperature information). In addition to the benefits for ecological monitoring, such as easy detection of animal attendance patterns, this type of annotated time-lapse imagery can be employed as a training tool for machine learning algorithms to automate data extraction, and we encourage the use of this data set for computer vision development.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet