Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Chris Lintott

Professor of Astrophysics and Citizen Science Lead

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
chris.lintott@physics.ox.ac.uk
Telephone: 01865 (2)73638
Denys Wilkinson Building, room 532C
www.zooniverse.org
orcid.org/0000-0001-5578-359X
  • About
  • Citizen science
  • Group alumni
  • Publications

Zooniverse labs

Zooniverse lab
Build your own Zooniverse project

The Zooniverse lab lets anyone build their own citizen science project

Zooniverse Lab

Planet Hunters: The First Two Planet Candidates Identified by the Public using the Kepler Public Archive Data

ArXiv 1109.4621 (2011)

Authors:

Debra Fischer, Megan Schwamb, Kevin Schawinski, Chris Lintott, John Brewer, Matt Giguere, Stuart Lynn, Michael Parrish, Thibault Sartori, Robert Simpson, Arfon Smith, Julien Spronck, Natalie Batalha, Jason Rowe, Jon Jenkins, Steve Bryson, Andrej Prsa, Peter Tenenbaum, Justin Crepp, Tim Morton, Andrew Howard, Michele Beleu, Zachary Kaplan, Nick vanNispen, Charlie Sharzer, Justin DeFouw, Agnieszka Hajduk, Joe Neal, Adam Nemec, Nadine Schuepbach, Valerij Zimmermann

Abstract:

Planet Hunters is a new citizen science project, designed to engage the public in an exoplanet search using NASA Kepler public release data. In the first month after launch, users identified two new planet candidates which survived our checks for false- positives. The follow-up effort included analysis of Keck HIRES spectra of the host stars, analysis of pixel centroid offsets in the Kepler data and adaptive optics imaging at Keck using NIRC2. Spectral synthesis modeling coupled with stellar evolutionary models yields a stellar density distribution, which is used to model the transit orbit. The orbital periods of the planet candidates are 9.8844 \pm0.0087 days (KIC 10905746) and 49.7696 \pm0.00039 (KIC 6185331) days and the modeled planet radii are 2.65 and 8.05 R\oplus. The involvement of citizen scientists as part of Planet Hunters is therefore shown to be a valuable and reliable tool in exoplanet detection.
Details from ArXiV
More details from the publisher
More details

Tidal dwarf galaxies in the nearby Universe

ArXiv 1108.441 (2011)

Authors:

Sugata Kaviraj, Daniel Darg, Chris Lintott, Kevin Schawinski, Joseph Silk

Abstract:

We present a statistical observational study of the tidal dwarf (TD) population in the nearby Universe, by exploiting a large, homogeneous catalogue of galaxy mergers compiled from the SDSS. 95% of TD-producing mergers involve two spiral progenitors, while most remaining systems have at least one spiral progenitor. The fraction of TD-producing mergers where both parents are early-type galaxies is <2%, suggesting that TDs are unlikely to form in such mergers. The bulk of TD-producing systems inhabit a field environment and have mass ratios greater than 1:7 (the median value is 1:2.5). TDs forming at the tidal-tail tips are ~4 times more massive than those forming at the base of the tails. TDs have stellar masses that are less than 10% of the stellar masses of their parents and typically lie within 15 optical half-light radii of their parent galaxies. The TD population is typically bluer than the parents, with a median offset of ~0.3 mag in the (g-r) colour and the TD colours are not affected by the presence of AGN activity in their parents. An analysis of their star formation histories indicates that TDs contain both newly formed stars (with a median age of ~30 Myr) and old stars drawn from the parent disks, each component probably contributing roughly equally to their stellar mass. Thus, TDs are not formed purely through gas condensation in tidal tails but host a significant component of old stars from the parent disks. Finally, an analysis of the TD contribution to the local dwarf-to-massive galaxy ratio indicates that ~6% of dwarfs in nearby clusters may have a tidal origin, if TD production rates in nearby mergers are representative of those in the high-redshift Universe. Even if TD production rates at high redshift were several factors higher, it seems unlikely that the entire dwarf galaxy population today is a result of merger activity over the lifetime of the Universe.
Details from ArXiV

Galaxy Zoo: dust and molecular gas in early-type galaxies with prominent dust lanes

ArXiv 1107.5306 (2011)

Authors:

Sugata Kaviraj, Yuan-Sen Ting, Martin Bureau, Stanislav S Shabala, R Mark Crockett, Joseph Silk, Chris Lintott, Arfon Smith, William C Keel, Karen L Masters, Kevin Schawinski, Steven P Bamford

Abstract:

We study dust and associated molecular gas in 352 nearby early-type galaxies (ETGs) with prominent dust lanes. 65% of these `dusty ETGs' (D-ETGs) are morphologically disturbed, suggesting a merger origin. This is consistent with the D-ETGs residing in lower density environments compared to the controls drawn from the general ETG population. 80% of D-ETGs inhabit the field (compared to 60% of the controls) and <2% inhabit clusters (compared to 10% of the controls). Compared to the controls, D-ETGs exhibit bluer UV-optical colours (indicating enhanced star formation) and an AGN fraction that is more than an order of magnitude greater (indicating higher incidence of nuclear activity). The clumpy dust mass residing in large-scale features is estimated, using the SDSS r-band images, to be 10^{4.5}-10^{6.5} MSun. A comparison to the total (clumpy + diffuse) dust masses- calculated using the far-IR fluxes of 15% of the D-ETGs that are detected by the IRAS- indicates that only ~20% of the dust resides in these large-scale features. The dust masses are several times larger than the maximum value expected from stellar mass loss, ruling out an internal origin. The dust content shows no correlation with the blue luminosity, indicating that it is not related to a galactic scale cooling flow. No correlation is found with the age of the recent starburst, suggesting that the dust is accreted directly in the merger rather than being produced in situ by the triggered star formation. Using molecular gas-to-dust ratios of ETGs in the literature we estimate that the median current and initial molecular gas fraction are ~1.3% and ~4%, respectively. Recent work suggests that the merger activity in nearby ETGs largely involves minor mergers (mass ratios between 1:10 and 1:4). If the IRAS-detected D-ETGs form via this channel, then the original gas fractions of the accreted satellites are 20%-44%. [Abridged]
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: dust lane early-type galaxies are tracers of recent, gas-rich minor mergers

ArXiv 1107.531 (2011)

Authors:

Stanislav S Shabala, Yuan-Sen Ting, Sugata Kaviraj, Chris Lintott, R Mark Crockett, Joseph Silk, Marc Sarzi, Kevin Schawinski, Steven P Bamford, Edd Edmondson

Abstract:

We present the second of two papers concerning the origin and evolution of local early-type galaxies exhibiting dust features. We use optical and radio data to examine the nature of active galactic nucleus (AGN) activity in these objects, and compare these with a carefully constructed control sample. We find that dust lane early-type galaxies are much more likely to host emission-line AGN than the control sample galaxies. Moreover, there is a strong correlation between radio and emission-line AGN activity in dust lane early-types, but not the control sample. Dust lane early-type galaxies show the same distribution of AGN properties in rich and poor environments, suggesting a similar triggering mechanism. By contrast, this is not the case for early-types with no dust features. These findings strongly suggest that dust lane early-type galaxies are starburst systems formed in gas-rich mergers. Further evidence in support of this scenario is provided by enhanced star formation and black hole accretion rates in these objects. Dust lane early-types therefore represent an evolutionary stage between starbursting and quiescent galaxies. In these objects, the AGN has already been triggered but has not as yet completely destroyed the gas reservoir required for star formation.
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: Morphological Classification and Citizen Science

ArXiv 1104.5513 (2011)

Authors:

Lucy Fortson, Karen Masters, Robert Nichol, Kirk Borne, Edd Edmondson, Chris Lintott, Jordan Raddick, Kevin Schawinski, John Wallin

Abstract:

We provide a brief overview of the Galaxy Zoo and Zooniverse projects, including a short discussion of the history of, and motivation for, these projects as well as reviewing the science these innovative internet-based citizen science projects have produced so far. We briefly describe the method of applying en-masse human pattern recognition capabilities to complex data in data-intensive research. We also provide a discussion of the lessons learned from developing and running these community--based projects including thoughts on future applications of this methodology. This review is intended to give the reader a quick and simple introduction to the Zooniverse.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet