Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Chris Lintott

Professor of Astrophysics and Citizen Science Lead

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
chris.lintott@physics.ox.ac.uk
Telephone: 01865 (2)73638
Denys Wilkinson Building, room 532C
www.zooniverse.org
orcid.org/0000-0001-5578-359X
  • About
  • Citizen science
  • Group alumni
  • Publications

Zooniverse labs

Zooniverse lab
Build your own Zooniverse project

The Zooniverse lab lets anyone build their own citizen science project

Zooniverse Lab

Galaxy Zoo Supernovae

Monthly Notices of the Royal Astronomical Society 412:2 (2011) 1309-1319

Authors:

AM Smith, S Lynn, M Sullivan, CJ Lintott, PE Nugent, J Botyanszki, M Kasliwal, R Quimby, SP Bamford, LF Fortson, K Schawinski, I Hook, S Blake, P Podsiadlowski, J Jönsson, A Gal-Yam, I Arcavi, DA Howell, JS Bloom, J Jacobsen, SR Kulkarni, NM Law, EO Ofek, R Walters

Abstract:

This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof-of-concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period 2010 April-July, during which nearly 14000 supernova candidates from the PTF were classified by more than 2500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners and identified as transients 93 per cent of the ∼130 spectroscopically confirmed supernovae (SNe) that the PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise ratio detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with ≥8σ detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches, such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events and via the training and improvement of existing machine classifier algorithms. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher

Galaxy Zoo: Bar lengths in local disc galaxies

Monthly Notices of the Royal Astronomical Society 415:4 (2011) 3627-3640

Authors:

B Hoyle, KL Masters, RC Nichol, EM Edmondson, AM Smith, C Lintott, R Scranton, S Bamford, K Schawinski, D Thomas

Abstract:

We present an analysis of bar length measurements of 3150 local galaxies in a volume-limited sample of low-redshift (z < 0.06) disc galaxies. Barred galaxies were initially selected from the Galaxy Zoo 2 project, and the lengths and widths of the bars were manually drawn by members of the Galaxy Zoo community using a Google Maps interface. Bars were measured independently by different observers, multiple times per galaxy (≥3), and we find that observers were able to reproduce their own bar lengths to 3 per cent and each others' to better than 20 per cent. We find a colour bimodality in our disc galaxy population with bar length, i.e. longer bars inhabit redder disc galaxies and the bars themselves are redder, and that the bluest galaxies host the smallest galactic bars (<5h-1kpc). We also find that bar and disc colours are clearly correlated, and for galaxies with small bars, the disc is, on average, redder than the bar colours, while for longer bars the bar then itself is redder, on average, than the disc. We further find that galaxies with a prominent bulge are more likely to host longer bars than those without bulges. We categorize our galaxy populations by how the bar and/or ring are connected to the spiral arms. We find that galaxies whose bars are directly connected to the spiral arms are preferentially bluer and that these galaxies host typically shorter bars. Within the scatter, we find that stronger bars are found in galaxies which host a ring (and only a ring). The bar length and width measurements used herein are made publicly available for others to use. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
More details

Galaxy Zoo: Multimergers and the Millennium Simulation

Monthly Notices of the Royal Astronomical Society 416:3 (2011) 1745-1755

Authors:

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, J Silk, S Lynn, S Bamford, RC Nichol

Abstract:

We present a catalogue of 39 multiple mergers, found using the mergers catalogue of the Galaxy Zoo project for z < 0.1, and compare them to corresponding semi-analytical galaxies from the Millennium Simulation. We estimate the (volume-limited) multimerger fraction of the local Universe using our sample and find it to be at least 2 orders of magnitude less than binary mergers - in good agreement with the simulations (especially the Munich group). We then investigate the properties of galaxies in binary mergers and multimergers (morphologies, colours, stellar masses and environment) and compare these results with those predicted by the semi-analytical galaxies. We find that multimergers favour galaxies with properties typical of elliptical morphologies and that this is in qualitative agreement with the models. Studies of multimergers thus provide an independent (and largely corroborating) test of the Millennium semi-analytical models. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
More details from the publisher
More details
Details from ArXiV

Moon Zoo: Citizen science in lunar exploration

Astronomy and Geophysics 52:2 (2011) 2.10-2.12

Authors:

K Joy, I Crawford, P Grindrod, C Lintott, S Bamford, A Smith, A Cook, M Zoo

Abstract:

The Moon Zoo Team describe how citizen scientists can get involved and explore the Moon online. © 2011 Royal Astronomical Society.
More details from the publisher

Galaxy Zoo: Bar lengths in local disc galaxies

Monthly Notices of the Royal Astronomical Society (2011)

Authors:

B Hoyle, KL Masters, RC Nichol, EM Edmondson, AM Smith, C Lintott, R Scranton, S Bamford, K Schawinski, D Thomas
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet