Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Chris Lintott

Professor of Astrophysics and Citizen Science Lead

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
chris.lintott@physics.ox.ac.uk
Telephone: 01865 (2)73638
Denys Wilkinson Building, room 532C
www.zooniverse.org
orcid.org/0000-0001-5578-359X
  • About
  • Citizen science
  • Group alumni
  • Publications

Zooniverse labs

Zooniverse lab
Build your own Zooniverse project

The Zooniverse lab lets anyone build their own citizen science project

Zooniverse Lab

Galaxy zoo: The fundamentally different co-evolution of supermassive black holes and their early- and late-type host galaxies

Astrophysical Journal 711:1 (2010) 284-302

Authors:

K Schawinski, CM Urry, S Virani, P Coppi, SP Bamford, E Treister, CJ Lintott, M Sarzi, WC Keel, S Kaviraj, CN Cardamone, KL Masters, NP Ross, D Andreescu, P Murray, RC Nichol, MJ Raddick, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities >1040erg s-1 in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (1010-10 11M ⊙), reside in the green valley of the color-mass diagram and their central black holes have median masses around 10 6.5M ⊙. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (1010M ⊙) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10 11M ⊙) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L Edd>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the "sweet spot" on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies. © 2010 The American Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Tasking Citizen Scientists from Galaxy Zoo to Model Galaxy Collisions

GALAXY WARS: STELLAR POPULATIONS AND STAR FORMATION IN INTERACTING GALAXIES 423 (2010) 217-+

Authors:

John Wallin, Anthony Holincheck, Kirk Borne, Chris Lintott, Arfon Smith, Steven Bamford, Lucy Fortson
More details

Tasking Citizen Scientists from Galaxy Zoo to Model Galaxy Collisions: Preliminary Results, Interface, Analysis

GALAXY WARS: STELLAR POPULATIONS AND STAR FORMATION IN INTERACTING GALAXIES 423 (2010) 223-+

Authors:

Anthony Holincheck, John Wallin, Kirk Borne, Chris Lintott, Arfon Smith, Steven Bamford, Lucy Fortson
More details

Galaxy Zoo: Exploring the Motivations of Citizen Science Volunteers

ArXiv 0909.2925 (2009)

Authors:

M Jordan Raddick, Georgia Bracey, Pamela L Gay, Chris J Lintott, Phil Murray, Kevin Schawinski, Alexander S Szalay, Jan Vandenberg

Abstract:

The Galaxy Zoo citizen science website invites anyone with an Internet connection to participate in research by classifying galaxies from the Sloan Digital Sky Survey. As of April 2009, more than 200,000 volunteers had made more than 100 million galaxy classifications. In this paper, we present results of a pilot study into the motivations and demographics of Galaxy Zoo volunteers, and define a technique to determine motivations from free responses that can be used in larger multiple-choice surveys with similar populations. Our categories form the basis for a future survey, with the goal of determining the prevalence of each motivation.
Details from ArXiV
More details from the publisher

Galaxy Zoo Green Peas: Discovery of A Class of Compact Extremely Star-Forming Galaxies

ArXiv 0907.4155 (2009)

Authors:

Carolin N Cardamone, Kevin Schawinski, Marc Sarzi, Steven P Bamford, Nicola Bennert, CM Urry, Chris Lintott, William C Keel, John Parejko, Robert C Nichol, Daniel Thomas, Dan Andreescu, Phil Murray, M Jordan Raddick, Anze Slosar, Alex Szalay, Jan VandenBerg

Abstract:

We investigate a class of rapidly growing emission line galaxies, known as "Green Peas", first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] 5007 A, with an unusually large equivalent width of up to ~1000 A. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M~10^8.5 - 10^10 M_sun) with high star formation rates (~10 M_sun/yr), low metallicities (log[O/H] + 12 ~ 8.7) and low reddening (E(B-V) < 0.25) and they reside in low density environments. They have some of the highest specific star formation rates (up to ~10^{-8} yr^{-1}) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lyman-break galaxies and Lyman-alpha emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet