Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof Chris Lintott

Professor of Astrophysics and Citizen Science Lead

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Zooniverse
  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
chris.lintott@physics.ox.ac.uk
Telephone: 01865 (2)73638
Denys Wilkinson Building, room 532C
www.zooniverse.org
orcid.org/0000-0001-5578-359X
  • About
  • Citizen science
  • Group alumni
  • Publications

Zooniverse labs

Zooniverse lab
Build your own Zooniverse project

The Zooniverse lab lets anyone build their own citizen science project

Zooniverse Lab

Galaxy Zoo: A correlation between coherence of galaxy spin chirality and star formation efficiency

ArXiv 0906.0994 (2009)

Authors:

Raul Jimenez, Anze Slosar, Licia Verde, Steven Bamford, Chris Lintott, Kevin Schawinski, Robert Nichol, Dan Andreescu, Kate Land, Phil Murray, M Jordan Raddick, Alex Szalay, Daniel Thomas, Jan Vandenberg

Abstract:

We report on the finding of a correlation between galaxies' past star formation activity and the degree to which neighbouring galaxies rotation axes are aligned. This is obtained by cross-correlating star formation histories, derived with MOPED, and spin direction (chirality), as determined by the Galaxy Zoo project, for a sample of SDSS galaxies. Our findings suggest that spiral galaxies which formed the majority of their stars early (z > 2) tend to display coherent rotation over scales of ~10 Mpc/h. The correlation is weaker for galaxies with significant recent star formation. We find evidence for this alignment at more than the 5-sigma level, but no correlation with other galaxy stellar properties. This finding can be explained within the context of hierarchical tidal-torque theory if the SDSS galaxies harboring the majority of the old stellar population where formed in the past, in the same filament and at about the same time. Galaxies with significant recent star formation instead are in the field, thus influenced by the general tidal field that will align them in random directions or had a recent merger which would promote star formation, but deviate the spin direction.
Details from ArXiV
More details from the publisher
More details

Revealing Hanny's Voorwerp: radio observations of IC 2497

ArXiv 0905.1851 (2009)

Authors:

GIG Jozsa, MA Garrett, TA Oosterloo, H Rampadarath, Z Paragi, H van Arkel, C Lintott, WC Keel, K Schawinski, E Edmondson

Abstract:

We present multi-wavelength radio observations in the direction of the spiral galaxy IC 2497 and the neighbouring emission nebula known as "Hanny's Voorwerp". Our WSRT continuum observations at 1.4 GHz and 4.9 GHz, reveal the presence of extended emission at the position of the nebulosity, although the bulk of the emission remains unresolved at the centre of the galaxy. e-VLBI 1.65 GHz observations show that on the milliarcsecond-scale a faint central compact source is present in IC 2497 with a brightness temperature in excess of 4E5 K. With the WSRT, we detect a large reservoir of neutral hydrogen in the proximity of IC 2497. One cloud complex with a total mass of 5.6E9 Msol to the South of IC 2497, encompasses Hanny's Voorwerp. Another cloud complex is located at the position of a small galaxy group ~100 kpc to the West of IC 2497 with a mass of 2.9E9 Msol. Our data hint at a physical connection between both complexes. We also detect HI in absorption against the central continuum source of IC 2497. Our observations strongly support the hypothesis that Hanny's Voorwerp is being ionised by an AGN in the centre of IC 2497. In this scenario, a plasma jet associated with the AGN, clears a path through the ISM/IGM in the direction towards the nebulosity. The large-scale radio continuum emission possibly originates from the interaction between this jet and the large cloud complex that Hanny's Voorwerp is embedded in. The HI kinematics do not fit regular rotation, thus the cloud complex around IC 2497 is probably of tidal origin. From the HI absorption against the central source, we derive a lower limit of 2.8E21 +- 0.4E21 atoms/sqcm to the HI column density. However, assuming non-standard conditions for the detected gas, we cannot exclude the possibility that the AGN in the centre of IC 2497 is Compton-thick.
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: The properties of merging galaxies in the nearby Universe - local environments, colours, masses, star-formation rates and AGN activity

ArXiv 0903.5057 (2009)

Authors:

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, M Sarzi, S Bamford, J Silk, D Andreescu, P Murray, RC Nichol, MJ Raddick, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

Following the study of Darg et al. (2009; hereafter D09a) we explore the environments, optical colours, stellar masses, star formation and AGN activity in a sample of 3003 pairs of merging galaxies drawn from the SDSS using visual classifications from the Galaxy Zoo project. While D09a found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must, therefore, arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star-formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being `over-observed' in mergers. We also suggest that the transition mass $3\times10^{10}{M}_{\astrosun}$, noted by \citet{kauffmann1}, below which ellipticals are rare could be linked to disc survival/destruction in mergers.
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies

ArXiv 0903.4937 (2009)

Authors:

DW Darg, S Kaviraj, CJ Lintott, K Schawinski, M Sarzi, S Bamford, J Silk, R Proctor, D Andreescu, P Murray, RC Nichol, MJ Raddick, A Slosar, AS Szalay, D Thomas, J Vandenberg

Abstract:

We present the largest, most homogeneous catalogue of merging galaxies in the nearby universe obtained through the Galaxy Zoo project - an interface on the world-wide web enabling large-scale morphological classification of galaxies through visual inspection of images from the Sloan Digital Sky Survey (SDSS). The method converts a set of visually-inspected classifications for each galaxy into a single parameter (the `weighted-merger-vote fraction,' $f_m$) which describes our confidence that the system is part of an ongoing merger. We describe how $f_m$ is used to create a catalogue of 3003 visually-selected pairs of merging galaxies from the SDSS in the redshift range $0.005 < z <0.1$. We use our merger sample and values of $f_m$ applied to the SDSS Main Galaxy Spectral sample (MGS) to estimate that the fraction of volume-limited ($M_r < -20.55$) major mergers ($1/3 < {M}^*_1/{M}^*_2 < 3$) in the nearby universe is $1 - 3 \times C%$ where $C \sim 1.5$ is a correction factor for spectroscopic incompleteness. Having visually classified the morphologies of the constituent galaxies in our mergers, we find that the spiral-to-elliptical ratio of galaxies in mergers is higher by a factor $\sim 2$ relative to the global population. In a companion paper, we examine the internal properties of these merging galaxies and conclude that this high spiral-to-elliptical ratio in mergers is due to a longer time-scale over which mergers with spirals are detectable compared to mergers with ellipticals.
Details from ArXiV
More details from the publisher
More details

Galaxy Zoo: A sample of blue early-type galaxies at low redshift

ArXiv 0903.3415 (2009)

Authors:

Kevin Schawinski, Chris Lintott, Daniel Thomas, Marc Sarzi, Dan Andreescu, Steven P Bamford, Sugata Kaviraj, Sadegh Khochfar, Kate Land, Phil Murray, Robert C Nichol, M Jordan Raddick, Anze Slosar, Alex Szalay, Jan VandenBerg, Sukyoung K Yi

Abstract:

We report the discovery of a population of nearby, blue early-type galaxies with high star formation rates (0.5 < SFR < 50 Msun/yr). They are identified by their visual morphology as provided by Galaxy Zoo for SDSS DR6 and their u-r colour. We select a volume-limited sample in the redshift range 0.02 < z < 0.05, corresponding to luminosities of approximately L* and above, and with u-r colours significantly bluer than the red sequence. We confirm the early-type morphology of the objects in this sample and investigate their environmental dependence and star formation properties. Blue early-type galaxies tend to live in lower-density environments than `normal' red sequence early-types and make up 5.7 +/-0.4% of the low-redshift early-type galaxy population. We find that such blue early-type galaxies are virtually absent at high velocity dispersions above 200 km/s. Our analysis uses emission line diganostic diagrams and we find that ~25% of them are actively starforming, while another ~25% host both star formation and an AGN. Another ~12% are AGN. The remaining 38% show no strong emission lines. When present and uncontaminated by an AGN contribution, the star formation is generally intense. We consider star formation rates derived from Halpha, u-band and infrared luminosities, and radial colour profiles, and conclude that the star formation is spatially extended. Of those objects that are not currently undergoing star formation must have ceased doing so recently in order to account for their blue optical colours. The gas phase metallicity of the actively starforming blue early-types galaxies is supersolar in all cases. We discuss the place of these objects in the context of galaxy formation. A catalogue of all 204 blue early-type galaxies in our sample, including star formation rates and emission line classification, is provided.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • Current page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet