Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Junjie Liu

Academic Visitor

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
junjie.liu@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Electron spin as fingerprint for charge generation and transport in doped organic semiconductors

Journal of Materials Chemistry C Royal Society of Chemistry 9:8 (2021) 2944-2954

Authors:

Alberto Privitera, Peregrine Warren, Giacomo Londi, Pascal Kaienburg, Junjie Liu, Andreas Sperlich, Andreas E Lauritzen, Oliver Thimm, Arzhang Ardavan, David Beljonne, Moritz Riede

Abstract:

We use the electron spin as a probe to gain insight into the mechanism of molecular doping in a p-doped zinc phthalocyanine host across a broad range of temperatures (80–280 K) and doping concentrations (0–5 wt% of F6-TCNNQ). Electron paramagnetic resonance (EPR) spectroscopy discloses the presence of two main paramagnetic species distinguished by two different g-tensors, which are assigned based on density functional theory calculations to the formation of a positive polaron on the host and a radical anion on the dopant. Close inspection of the EPR spectra shows that radical anions on the dopants couple in an antiferromagnetic manner at device-relevant doping concentrations, thereby suggesting the presence of dopant clustering, and that positive polarons on the molecular host move by polaron hopping with an activation energy of 5 meV. This activation energy is substantially smaller than that inferred from electrical conductivity measurements (∼233 meV), as the latter also includes a (major) contribution from charge-transfer state dissociation. It emerges from this study that probing the electron spin can provide rich information on the nature and dynamics of charge carriers generated upon doping molecular semiconductors, which could serve as a basis for the design of the next generation of dopant and host materials.
More details from the publisher
Details from ORA
More details

Spontaneous rotation of ferrimagnetism driven by antiferromagnetic spin canting

Physical Review Letters American Physical Society 124:12 (2020) 127201

Authors:

Anuradha Vibhakar, DD Khalyavin, P Manuel, Jieyi Liu, AA Belik, Roger Johnson

Abstract:

Spin-reorientation phase transitions that involve the rotation of a crystal's magnetization have been well characterized in distorted-perovskite oxides such as orthoferrites. In these systems spin reorientation occurs due to competing rare-earth and transition metal anisotropies coupled via f-d exchange. Here, we demonstrate an alternative paradigm for spin reorientation in distorted perovskites. We show that the R_{2}CuMnMn_{4}O_{12} (R=Y or Dy) triple A-site columnar-ordered quadruple perovskites have three ordered magnetic phases and up to two spin-reorientation phase transitions. Unlike the spin-reorientation phenomena in other distorted perovskites, these transitions are independent of rare-earth magnetism, but are instead driven by an instability towards antiferromagnetic spin canting likely originating in frustrated Heisenberg exchange interactions, and the competition between Dzyaloshinskii-Moriya and single-ion anisotropies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Unconventional field-induced spin gap in an S=1/2 Chiral staggered chain

Physical Review Letters American Physical Society 122 (2019) 057207

Authors:

Jesse Liu, S Kittaka, Roger Johnson, T Lancaster, J Singleton, T Sakakibara, Y Kohama, J Van Tol, Arzhang Ardavan, BH Williams, SJ Blundell, ZE Manson, JL Manson, PA Goddard

Abstract:

We investigate the low-temperature magnetic properties of the molecule-based chiral spin chain ½CuðpymÞðH2OÞ4SiF6 · H2O (pym ¼ pyrimidine). Electron-spin resonance, magnetometry and heat capacity measurements reveal the presence of staggered g tensors, a rich low-temperature excitation spectrum, a staggered susceptibility, and a spin gap that opens on the application of a magnetic field. These phenomena are reminiscent of those previously observed in nonchiral staggered chains, which are explicable within the sine-Gordon quantum-field theory. In the present case, however, although the sineGordon model accounts well for the form of the temperature dependence of the heat capacity, the size of the gap and its measured linear field dependence do not fit with the sine-Gordon theory as it stands. We propose that the differences arise due to additional terms in the Hamiltonian resulting from the chiral structure of ½CuðpymÞðH2OÞ4SiF6 · H2O, particularly a uniform Dzyaloshinskii-Moriya coupling and a fourfold periodic staggered field.
More details from the publisher
Details from ORA
More details
More details
More details
Details from ArXiV

Electric field control of spins in molecular magnets

Physical Review Letters American Physical Society 122:3 (2019) 037202

Authors:

J Liu, J Mrozek, WK Myers, GA Timco, B Kintzel, W Plass, Arzhang Ardavan

Abstract:

Coherent control of individual molecular spins in nanodevices is a pivotal prerequisite for fulfilling the potential promised by molecular spintronics. By applying electric field pulses during time-resolved electron spin resonance measurements, we measure the sensitivity of the spin in several antiferromagnetic molecular nanomagnets to external electric fields. We find a linear electric field dependence of the spin states in Cr7Mn, an antiferromagnetic ring with a ground-state spin of S ¼ 1, and in a frustrated Cu3 triangle, both with coefficients of about 2 rad s−1=V m−1. Conversely, the antiferromagnetic ring Cr7Ni, isomorphic with Cr7Mn but with S ¼ 1=2, does not exhibit a detectable effect. We propose that the spinelectric field coupling may be used for selectively controlling individual molecules embedded in nanodevices.
More details
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex

Chemical Communications Royal Society of Chemistry 54:92 (2018) 12934-12937

Authors:

B Kintzel, M Bohme, Junjie Liu, A Burkhardt, Jakub Mrozek, A Buchholz, Arzhang Ardavan, W Plass

Abstract:

The trinuclear copper(II) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = −298 cm−1) between the copper(II) ions, mediated by the N–N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet