Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Junjie Liu

Academic Visitor

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
junjie.liu@physics.ox.ac.uk
Telephone: 01865 (2)72318
Clarendon Laboratory, room 252.1
  • About
  • Publications

Implications of bond disorder in a S=1 kagome lattice

Scientific Reports Nature Publishing Group 8:1 (2018) 4745

Authors:

JL Manson, J Brambleby, PA Goddard, PM Spurgeon, JA Villa, Junjie Liu, S Ghannadzadeh, F Foronda, J Singleton, T Lancaster, SJ Clark, IO Thomas, F Xiao, RC Williams, FL Pratt, Stephen J Blundell, Craig V Topping, C Baines, C Campana, B Noll

Abstract:

Strong hydrogen bonds such as F···H···F offer new strategies to fabricate molecular architectures exhibiting novel structures and properties. Along these lines and, to potentially realize hydrogen-bond mediated superexchange interactions in a frustrated material, we synthesized [H2F]2[Ni3F6(Fpy)12][SbF6]2 (Fpy = 3-fluoropyridine). It was found that positionally-disordered H2F+ ions link neutral NiF2(Fpy)4 moieties into a kagome lattice with perfect 3-fold rotational symmetry. Detailed magnetic investigations combined with density-functional theory (DFT) revealed weak antiferromagnetic interactions (J ~ 0.4 K) and a large positive-D of 8.3 K with ms = 0 lying below ms = ±1. The observed weak magnetic coupling is attributed to bond-disorder of the H2F+ ions which leads to disrupted Ni-F···H-F-H···F-Ni exchange pathways. Despite this result, we argue that networks such as this may be a way forward in designing tunable materials with varying degrees of frustration.
More details from the publisher
Details from ORA
More details
More details

Endohedral metallofullerene as molecular high spin qubit: diverse Rabi cycles in Gd2@C79N

Journal of the American Chemical Society American Chemical Society 140:3 (2017) 1123-1130

Authors:

Z Hu, B-W Dong, Z Liu, Jun-Jie Liu, J Su, C Yu, J Xiong, D-E Shi, Y Wang, B-W Wang, Arzhang Ardavan, Z Shi, S-D Jiang, S Gao

Abstract:

An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M2@C79N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd2@C79N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (JGd-Rad = 350 ± 20 cm-1) has been unambiguously validated by magnetic susceptibility experiments. Gd2@C79N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.
More details from the publisher
Details from ORA
More details
More details

Strong coupling of microwave photons to antiferromagnetic fluctuations in an organic magnet

Physical Review Letters American Physical Society 119:14 (2017) 147701

Authors:

Matthias Mergenthaler, Junjie Liu, Jennifer Le Roy, Natalia Ares, Amber Thompson, Lapo Bogani, F Luis, Stephen Blundell, T Lancaster, Arzhang Ardavan, G Andrew D Briggs, Peter J Leek, Edward Laird

Abstract:

Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (cQED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multi-spin modes in organic crystals are suitable for cQED, offering a platform for their coherent manipulation. They also utilize the cQED architecture as a way to probe spin correlations at low temperature.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Quantum interference in graphene nanoconstrictions

Nano Letters American Chemical Society 16:7 (2016) 4210-4216

Authors:

Pascal Gehring, Hatef Sadeghi, Sara Sangtarash, Chit Siong Lau, Junjie Liu, Arzhang Ardavan, Jamie H Warner, Colin J Lambert, G Andrew D Briggs, Jan A Mol

Abstract:

We report quantum interference effects in the electrical conductance of chemical vapour deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multi-mode Fabry-Pérot interferences can be attributed to reflections on potential steps inside the channel. Sharp anti-resonance features with a Fano line shape are observed. Theoretical modelling reveals that these Fano resonances are due to localised states inside the constriction, which couple to the delocalised states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Antiferromagnetism in a family of S = 1 square lattice coordination polymers NiX2(pyz)2 (X = Cl, Br, I, NCS; pyz = pyrazine)

Inorganic Chemistry American Chemical Society 55:7 (2016) 3515-3529

Authors:

Junjie Liu, Paul Goddard, John Singleton, Jamie Brambleby, Francesca Foronda, Johannes S Möller, Yoshimitsu Kohama, Saman Ghannadzadeh, Arzhang Ardavan, Stephen J Blundell, Tom Lancaster, Fan Xiao, Robert C Williams, Francis L Pratt, Peter J Baker, Keola Wierschem, Saul H Lapidus, Kevin H Stone, Peter W Stephens, Jesper Bendix, Toby J Woods, Kimberly E Carreiro, Hope E Tran, Cecilia J Villa, Jamie L Manson

Abstract:

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3) and NCS (4)) were determined at 298 K by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]ZF6 (Z = P, Sb) which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggering of adjacent layers. Long-range antiferromagnetic order occurs below 1.5 (Cl), 1.9 (Br and NCS) and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3 and 4 are measured by electron spin resonance where no zero–field splitting was found. The magnetism of 1-4 crosses a spectrum from quasi-two-dimensional to three-dimensional antiferromagnetism. An excellent agreement was found between the pulsedfield magnetization, magnetic susceptibility and TN of 2 and 4. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. 3 is characterized as a three-dimensional antiferromagnet with the interlayer interaction (J⊥) slightly stronger than the interaction within the two-dimensional [Ni(pyz)2]2+ square planes (Jpyz).
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet