Reconstructing complex states of a 20-qubit quantum simulator
(2022)
Hybrid training of optical neural networks
Optica Optica Publishing Group 9:7 (2022) 803-811
Abstract:
Optical neural networks are emerging as a promising type of machine learning hardware capable of energy-efficient, parallel computation. Today’s optical neural networks are mainly developed to perform optical inference after in silico training on digital simulators. However, various physical imperfections that cannot be accurately modeled may lead to the notorious “reality gap” between the digital simulator and the physical system. To address this challenge, we demonstrate hybrid training of optical neural networks where the weight matrix is trained with neuron activation functions computed optically via forward propagation through the network. We examine the efficacy of hybrid training with three different networks: an optical linear classifier, a hybrid opto-electronic network, and a complex-valued optical network. We perform a study comparative to in silico training, and our results show that hybrid training is robust against different kinds of static noise. Our platform-agnostic hybrid training scheme can be applied to a wide variety of optical neural networks, and this work paves the way towards advanced all-optical training in machine intelligence.Simultaneous self-injection locking of two laser diodes to a single integrated microresonator
Institute of Electrical and Electronics Engineers (IEEE) 00 (2022) 1-1
Dual-laser self-injection locking to an integrated microresonator.
Optics express 30:10 (2022) 17094-17105
Abstract:
Diode laser self-injection locking (SIL) to a whispering gallery mode of a high quality factor resonator is a widely used method for laser linewidth narrowing and high-frequency noise suppression. SIL has already been used for the demonstration of ultra-low-noise photonic microwave oscillators and soliton microcomb generation and has a wide range of possible applications. Up to date, SIL was demonstrated only with a single laser. However, multi-frequency and narrow-linewidth laser sources are in high demand for modern telecommunication systems, quantum technologies, and microwave photonics. Here we experimentally demonstrate the dual-laser SIL of two multifrequency laser diodes to different modes of an integrated Si3N4 microresonator. Simultaneous spectrum collapse of both lasers, as well as linewidth narrowing and high-frequency noise suppression , as well as strong nonlinear interaction of the two fields with each other, are observed. Locking both lasers to the same mode results in a simultaneous frequency and phase stabilization and coherent addition of their outputs. Additionally, we provide a comprehensive dual-SIL theory and investigate the influence of lasers on each other caused by nonlinear effects in the microresonator.Autoregressive neural-network wavefunctions for ab initio quantum chemistry
Nature Machine Intelligence Springer Nature 4:4 (2022) 351-358