Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Lab image

Alexander Lvovsky

Professor

Research theme

  • Quantum optics & ultra-cold matter

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum and optical technology
alex.lvovsky@physics.ox.ac.uk
Telephone: +44 (0)1865 272275
Clarendon Laboratory, room 512.40.26
Home page
Group home page
  • About
  • Publications

Creating and detecting micro-macro photon-number entanglement by amplifying and deamplifying a single-photon entangled state.

Physical review letters 110:17 (2013) 170406

Authors:

Roohollah Ghobadi, Alexander Lvovsky, Christoph Simon

Abstract:

We propose a scheme for the observation of micro-macro entanglement in photon number based on amplifying and deamplifying a single-photon entangled state in combination with homodyne quantum state tomography. The created micro-macro entangled state, which exists between the amplification and deamplification steps, is a superposition of two components with mean photon numbers that differ by approximately a factor of three. We show that for reasonable values of photon loss it should be possible to detect micro-macro photon-number entanglement where the macrosystem has a mean number of one hundred photons or more.
More details from the publisher
More details
More details

Experimental characterization of bosonic creation and annihilation operators.

Physical review letters 110:13 (2013) 130403

Authors:

R Kumar, E Barrios, C Kupchak, AI Lvovsky

Abstract:

The photon creation and annihilation operators are cornerstones of the quantum description of the electromagnetic field. They signify the isomorphism of the optical Hilbert space to that of the harmonic oscillator and the bosonic nature of photons. We perform complete experimental characterization (quantum process tomography) of these operators. By measuring their effect on coherent states by means of homodyne tomography, we obtain their process tensor in the Fock basis, which explicitly shows the "raising" and "lowering" properties of these operators with respect to photon number states. This is the first experimental demonstration of complete tomography of nondeterministic quantum processes.
More details from the publisher
More details
More details

Observation of electromagnetically induced transparency in evanescent fields.

Optics express 21:6 (2013) 6880-6888

Authors:

R Thomas, C Kupchak, GS Agarwal, AI Lvovsky

Abstract:

We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon manifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.
More details from the publisher
More details
More details

A quantum delivery note

Nature Physics Springer Nature 9:1 (2013) 5-6
More details from the publisher
More details

Observation of micro-macro entanglement of light

(2012)

Authors:

AI Lvovsky, R Ghobadi, A Chandra, AS Prasad, C Simon
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet