Exploratory Combinatorial Optimization with Reinforcement Learning
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE 34 (2020) 3251-3258
Quantum-inspired annealers as Boltzmann generators for machine learning and statistical physics
(2019)
Entanglement of macroscopically distinct states of light
Optica Optical Society of America 6:11 (2019) 1425-1430
Abstract:
Schrödinger’s famous Gedankenexperiment has inspired multiple generations of physicists to think about apparent paradoxes that arise when the logic of quantum physics is applied to macroscopic objects. The development of quantum technologies enabled us to produce physical analogues of Schrödinger’s cats, such as superpositions of macroscopically distinct states as well as entangled states of microscopic and macroscopic entities. Here we take one step further and prepare an optical state which, in Schrödinger’s language, is equivalent to a superposition of two cats, one of which is dead and the other alive, but it is not known in which state each individual cat is. Specifically, the alive and dead states are, respectively, the displaced single photon and displaced vacuum (coherent state), with the magnitude of displacement being on a scale of 10^8 photons. These two states have significantly different photon statistics and are therefore macroscopically distinguishable.Quantum technologies in Russia
Quantum Science and Technology IOP Publishing 4:4 (2019) 40501