Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
Nature Catalysis (2026)
Abstract:
Ruthenium oxides (RuOImproved interconnecting layer for Perovskite–organic tandem solar cells
ACS Energy Letters American Chemical Society 10:10 (2025) 5184-5191
Abstract:
Monolithic perovskite–organic tandem solar cells (POTSCs) have attracted considerable attention in recent years due to their compatible fabrication routes and advances in single-cell efficiencies. To further boost the performance of POTSCs, reducing the voltage losses that mainly arise from wide bandgap (WBG, >1.7 eV) perovskite subcells and interconnecting layers (ICLs) is critical. Here, a new ICL with a configuration of C60/YbO x /Au/MoO x is demonstrated for constructing the monolithic POTSC. The YbO x -based ICL benefits from an ohmic contact and high transparency, resulting in improved POSTC performance. The champion device presents a PCE of 23.2% owing to a high V OC of 2.11 V (approximately equal to the sum of individual V OC’s of the subcells) without compromising the short-circuit current density and fill factors. This work opens an avenue for developing efficient ICLs in POTSCs.Automating the practice of science: Opportunities, challenges, and implications.
Proceedings of the National Academy of Sciences of the United States of America 122:5 (2025) e2401238121
Abstract:
Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches. Furthermore, it discusses different perspectives to the following questions: where do the greatest opportunities lie for automation in scientific practice?; What are the current bottlenecks of automating scientific practice?; and What are significant ethical and practical consequences of automating scientific practice? By discussing the motivations behind automated science, analyzing the hurdles encountered, and examining its implications, this article invites researchers, policymakers, and stakeholders to navigate the rapidly evolving frontier of automated scientific practice.Impact of Indium Doping in Lead-Free (CH 3 NH 3 ) 3 Bi 2– x In x I 9 Perovskite Photovoltaics for Indoor and Outdoor Light Harvesting
ACS Applied Electronic Materials American Chemical Society 6:11 (2024) 8360-8368
Abstract:
Hybrid halide perovskites (HHPs) have revolutionized the field of solar cells due to their low cost, solution-processable synthesis, and exceptional device performance. Although lead (Pb)-based perovskites are currently the most efficient, their application in indoor photovoltaics and wearable electronics is limited by lead’s toxicity. This has intensified the search for Pb-free alternatives, particularly for use in portable electronic devices. In this study, we utilized a vapor-assisted solution process to systematically engineer the composition of bismuth-based perovskite-inspired materials (PIMs) through indium doping, forming homogeneous and pinhole-free (CH3NH3)3Bi2–x In x I9 (Bi–In) films. These bimetallic Bi–In perovskites exhibit enhanced properties, including high recombination resistance, reduced low-frequency capacitance, lower defect density, and minimal microstrain. Electrochemical impedance spectroscopy (EIS) shows significantly reduced ion migration in Bi–In compositions compared with pure bismuth-based counterparts. The optimized Bi–In-based solar cells achieved a power conversion efficiency (PCE) of 2.5% under outdoor illumination and 5.9% under indoor lighting, showcasing their potential as promising lead-free alternatives for photovoltaic applications.Sterically Suppressed Phase Segregation in 3D Hollow Mixed-Halide Wide Band Gap Perovskites
The Journal of Physical Chemistry Letters American Chemical Society (ACS) 14:26 (2023) 6157-6162