Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Mei Ting Mak

Croucher Fellow

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
marthamak318@gmail.com
  • About
  • Publications

Modeling Atmospheric Lines by the Exoplanet Community (MALBEC) Version 1.0: A CUISINES Radiative Transfer Intercomparison Project

The Planetary Science Journal, Volume 5, Issue 3, id.64, 15 pp (2024)

Authors:

Geronimo L. Villanueva, Thomas J. Fauchez, Vincent Kofman, Eleonora Alei, Elspeth K. H. Lee, Estelle Janin, Michael D. Himes, Jérémy Leconte, Michaela Leung, Sara Faggi, Mei Ting Mak, Denis E. Sergeev, Thea Kozakis, James Manners, Nathan Mayne, Edward W. Schwieterman, Alex R. Howe and Natasha Batalha

Abstract:

Radiative transfer (RT) models are critical in the interpretation of exoplanetary spectra, in simulating exoplanet climates, and when designing the specifications of future flagship observatories. However, most models differ in methodologies and input data, which can lead to significantly different spectra. In this paper, we present the experimental protocol of the Modeling Atmospheric Lines By the Exoplanet Community (MALBEC) project. MALBEC is an exoplanet model intercomparison project that belongs to the Climates Using Interactive Suites of Intercomparisons Nested for Exoplanet Studies framework, which aims to provide the exoplanet community with a large and diverse set of comparison and validation of models. The proposed protocol tests include a large set of initial participating RT models, a broad range of atmospheres (from hot Jupiters to temperate terrestrials), and several observation geometries, which would allow us to quantify and compare the differences between different RT models used by the exoplanetary community. Two types of tests are proposed: transit spectroscopy and direct imaging modeling, with results from the proposed tests to be published in dedicated follow-up papers. To encourage the community to join this comparison effort and as an example, we present simulation results for one specific transit case (GJ-1214 b), in which we find notable differences in how the various codes handle the discretization of the atmospheres (e.g., sub-layering), the treatment of molecular opacities (e.g., correlated-k, line-by-line) and the default spectroscopic repositories generally used by each model (e.g., HITRAN, HITEMP, ExoMol).
More details from the publisher

3D Simulations of the Archean Earth Including Photochemical Haze Profiles

Journal of Geophysical Research: Atmospheres, Volume 128, Issue 20 (2023)

Authors:

M. T. Mak, N. J. Mayne, D. E. Sergeev, J. Manners, J. K. Eager-Nash, G. Arney, E. Hébrard, K. Kohary

Abstract:

We present results from 3D simulations of the Archean Earth including a prescribed (non-interactive) spherical haze generated through a 1D photochemical model. Our simulations suggest that a thin haze layer, formed when CH4/CO2 = 0.1, leads to global warming of ∼10.6 K due to the change of water vapor and cloud feedback, compared to the simulation without any haze. However, a thicker haze layer, formed when CH4/CO2 > 0.1, leads to global cooling of up to ∼65 K as the scattering and absorption of shortwave radiation from the haze reduces the radiation from reaching the planetary surface. A thermal inversion is formed with a lower tropopause as the CH4/CO2 ratio increases. The haze reaches an optical threshold thickness when CH4/CO2 ∼ 0.175 beyond which the atmospheric structure and the global surface temperature do not vary much.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet