Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Matthews

Royal Society University Research Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Gamma-ray astronomy
james.matthews@physics.ox.ac.uk
Telephone: 01865(2)73299
Denys Wilkinson Building, room Undercroft
Website
  • About
  • Into the Cosmos
  • Publications

MAXI J1848-015: The first detection of relativistically moving outflows from a globular cluster X-ray binary

Astrophysical Journal Letters IOP Publishing 948 (2023) L7

Authors:

A Bahramian, E Tremou, Aj Tetarenko, Jca Miller-Jones, Rp Fender, S Corbel, Dra Williams, J Strader, F Carotenuto, R Salinas, Ja Kennea, Se Motta, Pa Woudt, Jh Matthews, Td Russell

Abstract:

Over the past decade, observations of relativistic outflows from outbursting X-ray binaries in the Galactic field have grown significantly. In this work, we present the first detection of moving and decelerating radio-emitting outflows from an X-ray binary in a globular cluster. MAXI J1848−015 is a recently discovered transient X-ray binary in the direction of the globular cluster GLIMPSE-C01. Using observations from the Karl G. Jansky Very Large Array, and a monitoring campaign with the MeerKAT observatory for 500 days, we model the motion of the outflows. This represents some of the most intensive, long-term coverage of relativistically moving X-ray binary outflows to date. We use the proper motions of the outflows from MAXI J1848−015 to constrain the component of the intrinsic jet speed along the line of sight, β int cos θ ejection , to be =0.19 ± 0.02. Assuming it is located in GLIMPSE-C01, at 3.4 kpc, we determine the intrinsic jet speed, β int = 0.79 ± 0.07, and the inclination angle to the line of sight, θ ejection = 76° ± 2°. This makes the outflows from MAXI J1848−015 somewhat slower than those seen from many other known X-ray binaries. We also constrain the maximum distance to MAXI J1848−015 to be 4.3 kpc. Finally, we discuss the implications of our findings for the nature of the compact object in this system, finding that a black hole primary is a viable (but as-of-yet unconfirmed) explanation for the observed properties of MAXI J1848−015. If future data and/or analysis provide more conclusive evidence that MAXI J1848−015 indeed hosts a black hole, it would be the first black hole X-ray binary in outburst identified in a Galactic globular cluster.
More details from the publisher
Details from ORA
More details

The origin of optical emission lines in the soft state of X-ray binary outbursts: The case of MAXI J1820+070

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2023)

Authors:

Kii Koljonen, Ks Long, Jh Matthews, C Knigge

Abstract:

<jats:title>Abstract</jats:title> <jats:p>The optical emission line spectra of X-ray binaries (XRBs) are thought to be produced in an irradiated atmosphere, possibly the base of a wind, located above the outer accretion disc. However, the physical nature of – and physical conditions in – the line-forming region remain poorly understood. Here, we test the idea that the optical spectrum is formed in the transition region between the cool, geometrically thin part of the disc near the mid-plane and a hot, vertically extended atmosphere or outflow produced by X-ray irradiation. We first present a VLT X-Shooter spectrum of XRB MAXI J1820+070 in the soft state associated with its 2018 outburst, which displays a rich set of double-peaked hydrogen and helium recombination lines. Aided by ancillary X-ray spectra and reddening estimates, we then model this spectrum with the Monte Carlo radiative transfer code Python, using a simple biconical disc wind model inspired by radiation-hydrodynamic simulations of irradiation-driven outflows from XRB discs. Such a model can qualitatively reproduce the observed features; nearly all of the optical emission arising from the transonic ‘transition region’ near the base of the wind. In this region, characteristic electron densities are on the order of 1012 − 13 cm−3 , in line with the observed flat Balmer decrement (Hα/Hβ ≈ 1.3). We conclude that strong irradiation can naturally give rise to both the optical line-forming layer in XRB discs and an overlying outflow/atmosphere that produces X-ray absorption lines.</jats:p>
More details from the publisher
Details from ORA
More details

Correction to: Evidence for a moderate spin from X-ray reflection of the high-mass supermassive black hole in the cluster-hosted quasar H1821+643

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 517:1 (2022) 1006-1006

Authors:

Júlia Sisk-Reynés, Christopher S Reynolds, James H Matthews, Robyn N Smith
More details from the publisher
More details
More details

Connecting radio emission to AGN wind properties with broad absorption line quasars

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 515:4 (2022) 5159-5174

Authors:

JW Petley, LK Morabito, DM Alexander, AL Rankine, VA Fawcett, DJ Rosario, JH Matthews, TM Shimwell, A Drabent
More details from the publisher
More details

Evidence for a moderate spin from X-ray reflection of the high-mass supermassive black hole in the cluster-hosted quasar H1821+643

Monthly Notices of the Royal Astronomical Society Oxford University Press 514:2 (2022) 2568-2580

Authors:

Julia Sisk-Reynes, Christopher S Reynolds, James H Matthews, Robyn N Smith

Abstract:

We present an analysis of deep Chandra Low-Energy and High-Energy Transmission Grating archival observations of the extraordinarily luminous radio-quiet quasar H1821+643, hosted by a rich and massive cool-core cluster at redshift z = 0.3. These data sets provide high-resolution spectra of the AGN at two epochs, free from contamination by the intracluster medium and from the effects of photon pile-up, providing a sensitive probe of the iron-K band. At both epochs, the spectrum is well described by a power-law continuum plus X-ray reflection from both the inner accretion disc and cold, slowly moving distant matter. Adopting this framework, we proceed to examine the properties of the inner disc and the black hole spin. Using Markov chain Monte Carlo (MCMC) methods, we combine constraints from the two epochs assuming that the black hole spin, inner disc inclination, and inner disc iron abundance are invariant. The black hole spin is found to be modest, with a 90 per cent credible range of a ∗=0.62+0.22-0.37 and, with a mass MBH in the range log (MBH/M·) ∼9.2-10.5, this is the most massive black hole candidate for which a well-defined spin constraint has yet been obtained. The modest spin of this black hole supports previous suggestions that the most massive black holes may grow via incoherent or chaotic accretion and/or SMBH-SMBH mergers.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet