Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr James Matthews

Royal Society University Research Fellow

Research theme

  • Astronomy and astrophysics
  • Particle astrophysics & cosmology

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • Gamma-ray astronomy
james.matthews@physics.ox.ac.uk
Telephone: 01865(2)73299
Denys Wilkinson Building, room Undercroft
Website
  • About
  • Into the Cosmos
  • Publications

MeerKAT discovers a jet-driven bow shock near GRS 1915+105

Astronomy & Astrophysics EDP Sciences 696 (2025) a222

Authors:

SE Motta, P Atri, James H Matthews, Jakob van den Eijnden, Rob P Fender, James CA Miller-Jones, Ian Heywood, Patrick Woudt
More details from the publisher
More details

Quantifying jet–interstellar medium interactions in Cyg X-1: Insights from dual-frequency bow shock detection with MeerKAT

Astronomy & Astrophysics EDP Sciences 696 (2025) a223

Authors:

P Atri, SE Motta, J van den Eijnden, JH Matthews, JCA Miller-Jones, R Fender, D Williams-Baldwin, I Heywood, P Woudt
More details from the publisher
More details

Blast waves and reverse shocks: from ultra-relativistic GRBs to moderately relativistic X-ray binaries

(2025)

Authors:

James H Matthews, Alex J Cooper, Lauren Rhodes, Katherine Savard, Rob Fender, Francesco Carotenuto, Fraser J Cowie, Emma L Elley, Joe Bright, Andrew K Hughes, Sara E Motta
More details from the publisher
Details from ArXiV

Type I X-ray burst emission reflected into the eclipses of EXO 0748−676

Monthly Notices of the Royal Astronomical Society Oxford University Press 538:3 (2025) 2058-2074

Authors:

Amy H Knight, Jakob van den Eijnden, Adam Ingram, James H Matthews, Sara E Motta, Matthew Middleton, Giulio C Mancuso, Douglas JK Buisson, Diego Altamirano, Rob Fender, Timothy P Roberts

Abstract:

The neutron star X-ray binary, EXO 0748−676, was observed regularly by the Rossi X-ray Timing Explorer (RXTE) and XMM–Newton during its first detected outburst (1985–2008). These observations captured hundreds of asymmetric, energy-dependent X-ray eclipses, influenced by the ongoing ablation of the companion star and numerous Type I thermonuclear X-ray bursts. Here, we present the light curves of 22 Type I X-ray bursts observed by RXTE that coincide, fully or partially, with an X-ray eclipse. We identify nine instances where the burst occurs entirely within totality, seven bursts split across an egress, and six cases interrupted by an ingress. All in-eclipse and split bursts occurred while the source was in the hard spectral state. We establish that we are not observing direct burst emission during eclipses since the companion star and the ablated outflow entirely obscure our view of the X-ray emitting region. We determine that the reflected flux from the outer accretion disc, even if maximally flared, is insufficient to explain all observations of in-eclipse X-ray bursts and instead explore scenarios whereby the emission arising from the X-ray bursts is scattered, either by a burst-induced rise in that provides extra material, an accretion disc wind or the ablated outflow, into our line of sight. However, the rarity of a burst and eclipse overlap makes it challenging to determine their origin.
More details from the publisher
Details from ORA
More details

The Radio Counterpart to the Fast X-Ray Transient EP240414a

The Astrophysical Journal American Astronomical Society 981:1 (2025) 48

Authors:

Joe S Bright, Francesco Carotenuto, Rob Fender, Carmen Choza, Andrew Mummery, Peter G Jonker, Stephen J Smartt, David R DeBoer, Wael Farah, James Matthews, Alexander W Pollak, Lauren Rhodes, Andrew Siemion

Abstract:

Despite being operational for only a short time, the Einstein Probe mission, with its large field of view and rapid localization capabilities, has already significantly advanced the study of rapid variability in the soft X-ray sky. We report the discovery of luminous and variable radio emission from the Einstein Probe fast X-ray transient EP240414a, the second such source with a radio counterpart. The radio emission at 3 GHz peaks at ∼30 days postexplosion and with a spectral luminosity ∼2 × 1030 erg s−1 Hz−1, similar to what is seen from long gamma-ray bursts, and distinct from other extragalactic transients including supernovae and tidal disruption events, although we cannot completely rule out emission from engine driven stellar explosions, e.g., the fast blue optical transients. An equipartition analysis of our radio data reveals that an outflow with at least a moderate bulk Lorentz factor (Γ ≳ 1.6) with a minimum energy of ∼1048 erg is required to explain our observations. The apparent lack of a reported gamma-ray counterpart to EP240414a could suggest that an off-axis or choked jet could be responsible for the radio emission, although a low-luminosity gamma-ray burst may have gone undetected. Our observations are consistent with the hypothesis that a significant fraction of extragalactic fast X-ray transients are associated with the deaths of massive stars.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet