Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

David McGonegle

Visitor - OxCHEDS

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
David.McGonegle@physics.ox.ac.uk
  • About
  • Publications

Molecular dynamics simulations of inelastic X-Ray scattering from shocked copper

Journal of Applied Physics AIP Publishing 130 (2021) 125901

Authors:

Oliver Karnbach, Patrick Heighway, David McGonegle, Gianluca Gregori, Justin Wark

Abstract:

By taking the spatial and temporal Fourier transforms of the coordinates of the atoms in molecular dynamics simulations conducted using an embedded-atom-method potential, we calculate the inelastic scattering of x-rays from copper singlecrystals shocked along [001] to pressures of up to 70 GPa. Above the Hugoniot elastic limit (HEL), we find that the copious stacking faults generated at the shock front introduce strong quasi-elastic scattering (QES) that competes with the inelastic scattering signal, which remains discernible within the first Brillouin zone; for specific directions in reciprocal space outside the first zone, the QES dominates the inelastic signal overwhelmingly. The synthetic scattering spectra we generate from our Fourier transforms suggest that energy resolutions of order 10 meV would be required to distinguish inelastic from quasi-elastic scattering within the first Brillouin zone of shock-loaded copper. We further note that high-resolution inelastic scattering also affords the possibility of directly measuring particle velocities via the Doppler shift. These simulations are of relevance to future planned inelastic scattering experiments at x-ray Free Electron Laser (FEL) facilities.
More details from the publisher
Details from ORA
More details

Metastability of diamond ramp-compressed to 2TPa

Nature Nature 589:2021 (2021) 532-535

Authors:

David McGonegle, Patrick Heighway, Justin Wark

Abstract:

Carbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth’s core1,2,3. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets4,5. By compressing solid carbon to 2 terapascals (20 million atmospheres; more than five times the pressure at Earth’s core) using ramp-shaped laser pulses and simultaneously measuring nanosecond-duration time-resolved X-ray diffraction, we found that solid carbon retains the diamond structure far beyond its regime of predicted stability. The results confirm predictions that the strength of the tetrahedral molecular orbital bonds in diamond persists under enormous pressure, resulting in large energy barriers that hinder conversion to more-stable high-pressure allotropes1,2, just as graphite formation from metastable diamond is kinetically hindered at atmospheric pressure. This work nearly doubles the highest pressure at which X-ray diffraction has been recorded on any material.
More details from the publisher
Details from ORA
More details
More details

Recovery of a high-pressure phase formed under laser-driven compression

Physical Review B American Physical Society 102:2 (2020) 24101

Authors:

Mg Gorman, David McGonegle, Sj Tracy, Sm Clarke, Ca Bolme, Ae Gleason, Sj Ali, S Hok, Cw Greeff, Patrick Heighway, K Hulpach, B Glam, E Galtier, Hj Lee, Js Wark, Jh Eggert, Jk Wicks, Rf Smith

Abstract:

The recovery of metastable structures formed at high pressure has been a long-standing goal in the field of condensed matter physics. While laser-driven compression has been used as a method to generate novel structures at high pressure, to date no high-pressure phases have been quenched to ambient conditions. Here we demonstrate, using in situ x-ray diffraction and recovery methods, the successful quench of a high-pressure phase which was formed under laser-driven shock compression. We show that tailoring the pressure release path from a shock-compressed state to eliminate sample spall, and therefore excess heating, increases the recovery yield of the high-pressure ω phase of zirconium from 0% to 48%. Our results have important implications for the quenchability of novel phases of matter demonstrated to occur at extreme pressures using nanosecond laser-driven compression.
More details from the publisher
Details from ORA
More details

Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction

Applied Physics Letters AIP Publishing 115:26 (2019) 264101

Authors:

R Briggs, S Zhang, David McGonegle, AL Coleman, F Coppari, MA Morales-Silva, RF Smith, JK Wicks, CA Bolme, AE Gleason, E Cunningham, HJ Lee, B Nagler, MI McMahon, JH Eggert, DE Fratanduono

Abstract:

Little is known regarding the liquid structure of materials compressed to extreme conditions, and even less is known about liquid structures undergoing rapid compression on nanosecond timescales. Here, we report on liquid structure factor and radial distribution function measurements of tin shock compressed to 84(19) GPa. High-quality, femtosecond x-ray diffraction measurements at the Linac Coherent Light Source were used to extract the liquid diffuse scattering signal. From the radial distribution function, we find that the structural evolution of the liquid with increasing pressure mimics the evolution of the solid phase. With increasing pressure, we find that the liquid structure evolves from a complex structure, with a low coordination number, to a simple liquid structure with a coordination number of 12. We provide a pathway for future experiments to study liquids at elevated pressures using high-energy lasers to shock compress materials beyond the reach of static diamond anvil cell techniques.
More details from the publisher
Details from ORA
More details

Non-isentropic release of a shocked solid

Physical Review Letters American Physical Society 123:24 (2019) 245501

Authors:

PG Heighway, M Sliwa, D McGonegle, C Wehrenberg, CA Bolme, J Eggert, A Higginbotham, A Lazicki, HJ Lee, B Nagler, H-S Park, RE Rudd, RF Smith, MJ Suggit, D Swift, F Tavella, BA Remington, Justin Wark

Abstract:

We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet